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ABSTRACT

A method of computing reliable Gaussian and mean curvature sign-map descriptors from the
polynomial approximations of surfaces was demonstrated. Such descriptors which are invariant
under perspective variation are suitable for hypothesis generation.

A means for determining the pose of constructed geometric forms who;c algebraic surface
descriptions are non-linear in terms of their orenting parameters was developed. This was
done by means of lmcar‘ﬁmctions which are capable of approximating non-linear forms and
determining their parameters. It was shown that biquadratic surfaces are suitable companion-
linear forms for cylinder approximation and parameter estimation. The estimates provided the
initial parametric approximations necessary for a non-linear regression stage to fine wne the
estimates by fitting the actual non-linear form to the data.

A hypothesis-based split-merge algorithm for extraction and pose determination of cylinders
and planes which merge smoothly into other surfaces was developed. It was shown that all
split-merge algorithms are hypothesis-based.

A finite-state algorithm for the extraction of the boundaries of run-length regions was de-
veloped. The computation takes advantage of the run list topology and boundary direction

constraints implicit in the run-length encoding.
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CHAPTER I

INTRODUCTION

Image understanding is a field rich in prospect, approaches and methodologies. This fact
is attested to by the many journals, conferences, books and other publications on the subject.
There are myrads of papers describing such aspects of computer vision as feature detection,
image segmentation, image acquisition technologies, stereo vision, interest operators of all kinds,
planar surface fitting, curved surface recognition, object modeling, matching methodologies,
object recognition schemes etc. There does not seem to be a want of research attempts. Yet,
computer vision systems developed to date remain fragile and the oft mentioned integration of
the various research areas into a cogent whole remains ellusive. A simple task was used to focus
the research of this thesis. A robot equipped with a laser range scanner is required to recognize
an object from a library of objects and to determine its three-dimensional pose to a degree of
accuracy which permits a hole to be drilled in the object to specification (e.g. a perpendicular
hole through the side of the cylindrical portion of a machine part an inch from the end of the
cylinder). No system to date is able to perform this task.

This author believes that much of the problem facing computer vision lies in the paucity
of techniques to integrate the various components. Broadly speaking, all of computer vision
research may be divided into three classes. First, there are the bottom-up image-based (low-level)
operations; second, there are the top-down knowledge intensive (high-level vision) processes;

and, third, there is the representation of the data in a manner suitable for the computer vision



task. Most computer vision object recognition systems thus far developed emphasize one of these
three aspects. This has proven insufficient. Even systems which incorporate all the necessary
components are invariably dominated by one of the components. Knowledge-driven systems
depend a lot on top-down processes to drive the interpretation of features generated by the
bottom-up processes. Such ‘complete’ systems are scarce, and they too, have met with limited
success. Left to itself, the deficiencies of the top-down component and the inability to exploit the
strengths of bottom-up processes ultimately overwhelm the strengths of the top-down component.

When one examines the threefold division of computer vision as stated, one finds that the
edges of demarcation between high and low level vision want clear definition. It is easy to
talk about the detection of edges, for example, as low-level vision and the matching of extracted
silhouettes of objects to model silhouettes as high-level vision, but the distinction blurs when one
discusses such primitives or features as generalized-cylinders [46, 48, 49, 51], extended Gaussian
images [12, 100, 52, 102, 103, 126], extended Hough's transforms on planar faces [12, 64, 68},
smoothed local symmetries [44] etc. For these features to be computed, knowledge of various
degrees about the scene is required. Even with the computation of edges, the application of
scale space edge detectors [18, 61], direction dependent edge detectors (53, 54] and multi-
scale boundary classification [7, 71] require scene knowledge as well. The distinction is not
inconsequential. The process of extracting features from images is one of abstracting information
from the pixel data. The lack of a means of organizing this process of abstraction contributes to
the binary high-low level vision architecture and the scarcity of techniques to build hierarchical
visual reasoning systems.

This dissertation details an abstraction-based paradigm in which a hierarchical process of .
successive refinement may be implemented. While the paradigm outlines a significantly different
apbroach to field of object recognition than those contained in the literature, a narrow goal was

chosen to focus the research and to flesh out the paradigm. The goal was to develop technologies



which will allow a robot equipped with a laser range imaging device to perform the recognition
and pose determination task outlined in the beginning of this section. An abstraction hierarchy
is advanced for range image understanding along with techniques for making refinements to

traverse the hierarchy.

1.1 What is Abstraction?

A fundamental task in bridging the chasm between sensed data and an understanding of the
scene is that of coalescing massive quantities of numeric data into symbolic entities or features.
These lfeatures provide a semantic description of the objects or scene contained in the sensed
data. Under the bipartite regimen in which the low-level system components generate features
for interpretation by the high-level system components, it is not uncommon that a single step
sepdrates the feature detection from object recognition. A framework is necessary for multi-
levelled reasoning with the data.

The venerated solution to problems of this nature in computer science is to define a hierarchy
into which the processes and data may be arranged. Within such a hierarchy, the operative task
is to provide, in higher layers of the hierarchy, organization to subsets of data in lower layers of
the hierarchy. Such a hierarchy of abstraction may be applied to model the implicit hierarchies

of most computer vision systems.

Abstraction is a condensation of data into units of increasing semantic significance
by the application of certain assumptions. The degree of abstraction is measured by

the specificity of the assumptions necessary for its computation.

By this definition, the more specific the assumption made to arrive at the abstraction of a particular
unit (feature or object), the more abstract is that unit. The assumptions made to perform a
particular abstraction is called its abstracting assumptions. As an illustration of such hierarchical

abstraction, consider the example of the computation of shape from contours [15, 42, 43, 98, 111].



First, edge points may be computed in an intensity image by the application of an operator that
extracts points of discontinuity in the intensity values. The abstraction in this case is based
upon the general assumptions that true edge points of a three-dimensional object coincide with
such discontinuities, that the object surface is lambertian and often, that the illumination is
approximated by a distant point light source. The generation of closed contours by edge point
linking is based upon a stronger assumption that the edge points are correct (sometimes by
examining of edge bright-to-dark directions) and that the contours must be closed and is thus
higher in the hierarchy. The computation of the surface shape from the contours is based upon
the even stronger assumption that the closed contour belongs to a surface, [often] that the surface

is planar and that the surface shape is regular.

1.2 Models and Abstraction

The notion of models is very closely tied to abstraction. Models are overarching units into
which data are coalesced. They possess both the capacity to account for data and the ability to
impute meaningful interpretation upon the data accounted for. Models may take many forms.
They may be mathematical descriptions (e.g. polynomial patches), relation descriptions (e.g.
graph-based descriptions of surfaces in an object or syntactic pattem strings), property vector
descriptions (e.g. feature vectors used in statistical pattern recognition) etc.

Since data may be coalesced into models which account for and impute meaningful interpre-
tation upon data, a hierarchy of abstraction can be implemented as a hierarchy of models.

We shall now contrast the abstraction-based paradigm against the usual formulation §f object

recognition systems which we shall call the feature-model paradigm.

1.2.1 The Feature-Model Paradigm

For the sake of discussion we shall call the system described in figure 1.1 the feature-model

paradigm which divides computer vision into three major components: feature extraction, model
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Figure 1.1: Block diagram of a basic model-based image understanding system.

building or representation, and model matching.

Feature extraction addresses the issue of deriving features pertinent to the recognition process
from sensed data. It encompasses the problem of the selection of appropriate features and the
computation necessary lo glean these features from the sensed imagery. Model building or
representation is the task of describing the objects to be recognized in a manner which facilitates
their recognition. Model matching is the process in which the features extracted from sensed
data are mapped into the set of object models so as to determine the presence of objects and
their pose.

The three major components are insufficient in themselves to solve the image understanding
problem. The interaction among the components is of utmost importance.

The problems with this basic system are twofold. First, the system is open-looped so that
the object model is not able to guide the feature extraction process. Second, in the task of-
three-dimensional image understanding, features tend to deform with varying viewpoint owing
to occlusion and perspective change.

Detailed discussions on model-based object recognition systems can be found in [19, 32, 60].



Feature Extraction in the Feature-Model Approach

The feature extraction process of the feature-model configuration shown in Figure 1.1 operates
autonomously from the rest of the system. A set of features with a corresponding set of detection
operators is chosen to generate input to the recognition system which tries to match these features
to those in a set of models. Examples of such features are straight edges, surface curvature,
polyhedra, planar surfaces, Gaussian sphere characteristics [9, 41, 52, 58, 59, 75, 100, 102, 117,
118, 126, 130, 133] etc. Features are often chosen for their ability to discriminate among objects
which the system is designed to recognize. The designated feature detection operator is run over
the input images to obtain feature points.

The problem with the feature extraction operations in the context of the feature-model system
of Figure 1.1 is that they fail to utilize the knowledge contained in the system’s model base. This
failure to exploit the model level knowledge is paid for in terms of the imprecision of the detected
featﬁres and the high cost of exhaustive feature extraction. All feature detectors are sensitive 10
noise and aberrations in the illumination and sensing environment. The application of a general
purpose edge detector, for example, will generate many ‘false edges’ in addition to the portions
of edges truly present. False edges will then have to be removed and true edges completed by
some process which links the fragmented edge segments and fills in missing segments. Finally,
the still vast quantity of data in the incompletely segmented edge image is passed to the matcher
to be matched with the object models. During matching, attempts are sometimes made to separate
the sheep of actual edges from the goats of extraneous edges (actually the matcher often has to
breed new sheep by completing disconnected true edges). These are potentially combinatorially
explosive undertakings. Furthermore, in the event of erroneous segmentation, the system has no
way to direct the feature extraction module to produce an alternate segmentation and no avenue
t0 guide that resegmentation process. The lack of guidance (what to look for and where to look)

also precludes the use of specialized feature detectors.



Object Modeling and Representation

The second problem with the image understanding model of Figure 1.1 resides in the object
modeling and representation module labelled Model Builder. In the task of three-dimensional
image understanding, features tend to deform with varying viewpoint owing to occlusion and
perspective projection. A possible solution to this problem is the use of multiview representations.
This representation has been termed variously as aspect graphs, visual potentials, characteristic
views etc. [56, 57, 76, 77, 95, 136]. The impetus behind these approaches is that they simplify
the matching process. Each characteristic view can be thought of as a different model, and the
matching problem is reduced to finding a characteristic view model which satisfies the features
found in the sensed data. The problem with such approaches is that the storage requirements
increase dramatically with complexity of the objects being modeled as more characteristic views
need to be maintained. The subsequent increase in the number of views stored also increases the
combinatorics of the matching process. A good discussion of multiview representations can be
found in [121]. Another approach is that embodied in ACRONYM. ACRONYM makes use of
a volumetric representation in which all objects are decomposed into a set of generalized cones.
These cones are described by a length, an orientation, a cross-sectional shape and a sweep rule
which determines the variation in the cross-sectional area (of the same shape) along the length of
the cone [46, 48, 49, 51]. Since the perspective projections of cones yield generalized ribbons,
ACRONYM is able to ‘predict’ the perspective view of the object on-the-fly. As will be discussed

later, ACRONYM’s modeling scheme has its shortcomings as well.

Matching

Most feature-model systems represent the objects to be recognized as graphs or as feature
vectors. In graph representation the nodes usually correspond to features of the object and the

arcs indicate the spatial relationships between these features. The object recognition problem is



thus reduced to one of matching of pairs of graphs. Examples of such systems are described
in [37, 38, 39, 46, 48, 49, 51, 58, 59, 80, 152, 153]. Of these, ACRONYM [46, 48, 49, 51] is
the most significant attempt at a complete image understanding system. In pattern classification
techniques, feature vectors are made up of numeric evaluations of features. Recognition is
performed using a similarity measure between the observed feature vector computed from the
data and the model feature vectors.

A major problem with traditional matching techniques (with the acception of global statistical
feature vector methods which will be discussed later) is that they attempt to match all available
models with the detected features sequentially. The matching complexity is thus given by the
product of the number of models and the number of features generated by the feature extraction
process. Given the large number of real and false features detected, this can prove very expensive.
Another problem with the system of Figure 1.1 is that without interaction between the khowlcdgc
contained in the model base and the feature extraction module, the matching process distances

itself too rapidly from the image data. The matcher knows only of the symbolic data on the

graphs to be matched and any error in the construction of either graph is irreversible.

1.2.2 The Abstraction-Based Paradigm

Figure 1.2 is the conceptual block diagram of an abstraction based recognition configuration.
We shall call this the abstraction-based recognition paradigm. Instead of a spontaneous feature
extractor which operates indiscriminately upon the data, features are dealt with as abstractions
of the data which, upon verification, become data (albeit more abstract than the data it models)
upon which the system makes further abstractions. This allows the system (o use more specific
feature models which are not generally applicable to all data. This specificity-generality contrast
and the trade-offs between them are discussed in the ensuing section.

The abstraction-based paradigm employs a hypothesis-test strategy to distill abstractions



A
Assumplion Verification
Data > Abstraction
‘—éd-—- Modaels 4——04——
Generate Assumption Model Refinemant

(by application of General Principles
or Model/Scene Specific Inferences)

Figure 1.2: Block diagram of the abstraction-based paradigm.

out of the data. The object models and the scene cooperate to generate assumptions which
translate to particular interpretations (or abstractions) of subsets of the data. These abstractions
are instantiated and tested to see if the assumption applies. The resulting accepted abstractions
are both incorporated into the data-set and used to refine the model-base with greater context
information (e.g. pose information, presence of particular objects or sub-parts of objects serve
to constrain what objects are likely).

Assumptions may be generated either by the application of general mathematical and physical
principles (e.g. three-dimensional edges occur at discontinuities in the first derivatives in an
image) or by model-scene specific inferences (e.g. by indexing or matching). Initially, when
there is no information to make specific inferences as to what is in the scene, general assumptions
are applied. The features thus generated provide new scene specific information which allows
stronger assumptions to be drawmn.

The difference between the abstraction-based paradigm from traditional hypothesis-test tech-
niques operating under the feature-mode! approach is that the feature-model approach reasons

with precomputed features while the abstraction-based approach reasons about the features which
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need to be computed.

The feature-model approach attempts to impose organization on precomputed features to see if
they match models. The hypothesis-test strategy when applied in a feature-model system performs
recognition by forming hypotheses to explain how the precomputed features may be organized
to conform to the models and testing the hypotheses. The abstraction-based paradigm makes
explicit assumptions upon which features are computed. Upon computation of the hypothesized
features, the abstraction-based paradigm tests to see if the hypotheses were correct and uses
the resulting information to make further assumptions on the data. The key difference is thus
that the abstraction-based paradigm is able to work with the directly image data throughout the
abstraction process, computing features directly on the data. In the feature-mode! paradigm, the
feature extractor computes all the features for which it has been programmed ‘spontaneously’,
leaving the interpretation of this data to the ‘high-level’ system. The feature-model system is
thus unable to compute features which are relevent only to specific portions of an image and
under specific circumstances.

Figure 1.2 serves only as a conceptual block diagram The purpose of this thesis is to provide
the processing tools and concepts for making the necessary abstractions from range data, not to

design a control architecture to implement such a system.

1.3 Generality vs. Specificity

Up to this point, nothing has been said about the models which constitute the units into
which data is coalesced. The models to which data may be matched may be global, logical and
relational or numeric in nature (see figure 1.3).

Global matching is usually framed as the matching of feature vectors describing an object
to a set of model feature vectors. Such features include two dimensional eccentricity, aspect
ratio, Fourier descriptors, area, perimeter length etc. computed globally across the entire object.

Statistical pattern recognition techniques are by and large global matching techniques.
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Figure 1.3: Classes of matching processes in computer vision

Logical/relational matching considers iconic objects (or features) detected in a scene and the
relations, both spatial (e.g. above, below, parallel to etc.) and logical (e.g. member-of, is-a etc.)
among them. It attempts to find a corresponding set of icons and relations in a model which
matches those found in a scene. Examples of this are graph matching techniques such as graph
isomorphism, star graph and interpretation tree approaches and sequential parsing schemes such
as in syntactic pattern recognition.

Numerical model matching takes one of two forms. The first is an explicit application of some
numeric description of an object or feature to the data to obtain the parameters in the description
which would account for the data. Examples of this are Hough transforms to extract straight line
segments (the straight line equation is applied for the transformation), explicit fitting (usually
least-squares) of surface or contour descriptors like bi-variate polynomials, splines, quadrics etc.
The second is the application of some general model to extract image properties without explicit .
fitting or determination of the model parameters. Examples of this are the application of various
edge models which describe edges as discontinuities in the intensity distribution of an image,

morphological filtering techniques to extract smooth regions etc.
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The models to which data are maiched may be general in the sense that they can be applied to
a broad category of objects or signals. Edge models, polynomial surfaces and surface curvature
computations fall into this category. Such models have substantial matching capability in that
they are capable of maiching large variety of data, but, they have litle discriminating power.
Specific models, on the other hand, are adept at discriminating data arising from different objects
being viewed, but they are incapable of matching a variety of objects in the data. Examples
of specific models are cylindrical surfaces, planes, circles, straight lines etc. The most specific
model that can be matched to data representing an object is the model of the object itself.

There needs to be a trade off between general and specific models in a computer vision
system. It may be observed that general models apply general assumptions for their computation
and matching while specific models rely on more particular assumptions. This trade off can be
achieved within an abstraction hierarchy. Successive refinement or abstraction permits a system
to deal with data in each layer of the hierarchy in a modular fashion while maintaining the
relevance of the processing and permitting increasing semantic attribution to collections of data.
Each layer ‘understands’ what lower levels of processing presents to it and presents its results to
higher levels of processing, and the input data is maintained at each layer either for forwarding
to higher layers or for reprocessing. Each layer also ‘understands’ what it is asking of lower

processing levels.

1.4 Hypotheses in Image Understanding

Specificity is the objective of the recognition. What is desired is the model which is related
by identity to the object being viewed. By our earlier discussion, however, the abstraction of
highly specific entities from data requires very particular assumptions about the scene. Apart |
from the trivial case of matching a small number models to a scene which may contain no other
objects (where the specifying assumption is precisely that only one of a small set of objects may

be in view), it is impossible to match all combinations of data to all combinations of models.
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Figure 1.4: The general sequence of computation in computer vision

A logical solution would be a process of assumption (or abstraction) refinement to bridge the
progression from the general to the specific.

The key element for the introduction of greater specificity is greater understanding of the
context (information about the scene at large). A hypothesis-test strategy would facilitate such
context enriching interaction among the layers for computer vision.

Within the hypothesis-test paradigm, data at lower levels of the hierarchy provide evidence
for the forming of higher level overarching structures, while higher level structures serve as
hwoﬁescs for the organization of sub-sets of lower level data which may be tested at the lower
levels of the hierarchy. The former problem (hypothesis generation by evidence) is that of
indexing [83, 84, 85, 116, 117, 118] and the latter is that of hypothesis verification.

Figure 1.4 shows the general sequence of computation in computer vision. One begins
with the data (in image format), processes it (still in image format), extracts features from the .
processed data, and then attempts to recognize objects in the scene by manipulating the features.
Objects could then be manipulated to construct the scene. This progression is one of abstraction.

This thesis proposes that the ‘feature layer’ ought to be divided into two portions. The first
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is context free in its computation while the second is context sensitive.

Context free features are features whose computation is based upon generally applicable
assumptions of physics, illumination and/or mathematics. Such assumptions include contiguity
of surfaces, step edges at intensity/range discontinuities, etc. Examples of such features are
spline surfaces, polynomial surfaces, curvature-based classifiers, edge points, edge segments etc.

Context sensitive features are features or groups of features whose computation or detection is
dependent upon the content of the scene. This strict dependence upon specific hypothesis-driven
assumptions is necessary in order to overcome the combinatorics of matching (fitting) all data
to all possible features and to overcome the complexities introduced by perspective variation.
Examples of such features are constructed forms (e.g. planes, cylinders, cones, etc.), perspective
sensitive forms (e.g. silhouettes, oriented surfaces etc.), feature relationships (not all possible
relationships are entertained) etc.

A hypothesis-test strategy thus provides a platform for the computation or detection of any

context sensitive feature or object.

1.5 Thesis Statement

In a nutshell, this thesis advances an abstraction-based paradigm which makes explicit the
process of imposing assumptions on data. This general to specific refinement process provides
a mechanism to proceed gracefully from low level to high level vision processes and vice
versa. The task of specifying what is in a scene becomes one of making stronger and stronger
assumptions about what is in the image. This process of assumption and abstraction fumnishes
a path between symbolic descriptors of objects in the scene to their numeric specification. The
lack of this interaction has been a major hindrance to the development of robust vision systems. |

Other major contributions of this thesis are: the demonstration of a robust method of comput-
ing reliable surface curvature descriptors; the development of a means of determining the pose of

constructed geometric forms whose algebraic surface descriptions are non-linear in terms of their
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orienting parameters; the analysis, proof and demonstration that biquadratic surfaces are capable
of approximating cylinders and estimating their three-dimensional pose; and the development
of a hypothesis-based split-merge algorithm (it was shown that all split-merge algorithms are
hypothesis-based) for extraction and pose determination of cylinders and planes which merge

smoothly into other surfaces.

1.6 Thesis Layout

The focus of this chapter is the introduction of the theme of abstraction as an ordering
principle for hierarchical computer vision and the discussion of the interaction between abstraction
and hypothesis generation and test strategies. Chapter II overviews previous work in three-
dimensional image understanding; chapter III lays out the underlying strategy employed in the
work of this thesis for three-dimensional image understanding; chapter IV reviews and discusses
the necessary background material (mathematics and algorithms) for the techniques employed
in this thesis; chapter V details the split-merge segmentation technique employed; chapter VI
describes the process of estimating and fitting cylindrical surfaces; chapter VII discusses a fast
algorithm for extracting boundaries from run-length region descriptions; chapter VIII describes
the experimental work performed in the course of the research; and, conclusions are drawn in

chapter IX.



CHAPTER II

REVIEW OF PREVIOUS WORK

The image understanding problem can be defined as the interpretation of sensed data to yield
useful information about the environment being sensed. Such information should be sufficient
to describe what is being seen and how the things seen are related to each other in space. The
concept of usefulness immediately casts the problem within lhé framework of task performance
(a system to recognize and understand paint defects on an automobile may not be able to solve
the problem of the orbital docking of spacecraft). In three-dimensional image understanding, the
prevailing task is to obtain the description of a scene in three-dimensional space. This description
comprises the identity of objects and the determination of their poses in space.

The identification of objects is ultimately the determination that a sub-set of the sensed data is
accounted for by certain models of prototypes or classes of objects with the consequent inference
that the data arises from (is the result of) the presence in the scene of an article which is an
instance of the model. The pose of an object is the location and orientation of that object in
space.

The term model-based image understanding needs to be better defined. In reality, all recog-
nition systems make use of models in some way[60]. Statistical pattern recognition systems, |
for example, generally employ object models described as vectors of global features (eg. area,
perimeter, principle axes etc.) which are matched against corresponding vectors obtained from

the image being processed (79, 113, 161, 170]. Even if only a single critical feature were used

16
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in a recognition process, there is still the notion that the critical feature selected is a model of
the object to be recognized.

Model-based image understanding is a recognition paradigm which is driven by the models
of the objects to be recognized. These models are explicitly declared, and they guide the system
in its interpretation of the sensed data. Examples of such systems will be discussed later in this

chapter.

2.1 From Whence 3D Data

Three-dimensional data can be obtained in two ways. The first is from explicit range encoding
sensors. These sensors produce dense image arrays, each pixel of which is a measurement
of the distance of the corresponding surface point in three dimensional space to the sensor’s
coordinate system. Examples of such sensors are laser range finders and structured light laser
range finders (33, 108, 141, 146, 171, 172], triangulation sensors [16, 142], light stripe sensors
(6, 8, 37, 39, 95, 97] etc. A comprehensive discussion of explicit range encoding sensors is
found in [27].

The second method of obtaining range data is to extract distance information from image
data which does not explicitly contain range information. Each pixel of this image contains
information (e.g. intensity) about the corrcsponding point in three-dimensional space. Since
information about the three-dimensional configuration of the scene is extracted by the application
of certain cues, such techniques are often called shape-from-x techniques (where x is the cue
applied). Examples of these techniques are: shape from shading [67, 101, 135] shape from
texture [2, 114, 167], shape from binocular stereo [11, 14, 40, 127] shape from contour, [15, 42,
43, 98, 111), etc. Extensive discussions on these techniques can be found in [1, 19]. |

It is not our purpose, vhere, to survey the various techniques involved in generating range or
depth data. We do need, however, to have a cursorial understanding of what such data are before

we can proceed to determine the processes necessary to recognize objects and their poses from
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the data. Owing to the availability of range information from the data, one may easily be lulled
into believing that the bulk of the problem in three-dimensional image understanding is solved.
We do, after all, have information about where everything is. This is far from the truth. The
only information explicitly available in the data is how far particular points are from the sensor’s
coordinate system. There is no structure or shape in the data. For this reason, shape-from-x is
a misnomer. What these techniques provide are either depth points (usually sparse) or estimates
of local surface normals at, or intrinsic to, each point in the image. One thinks of shape as such
extrinsic descriptors as circular arc, straight line etc. in two-dimensions and cylinders, spheres,
planes etc in three-dimensions. At best, shape-from-x techniques generate data equivalent to
that available from explicit range sensors. To emphasize this lack of structure in range imagery,
Barrow and Tenenbaum called such data intrinsic images.

What is lacking is organizational structure other than pixel adjacency. According to our
abstraction-based model, we need to frame sub-groupings of this range information into seman-

tically significant units.

2.2 Reconstruction and Recognition

Schemes for representing of data for three-dimensional image understanding may be divided
into three classes. The first deals with the projection of the three-dimensional form onto two
dimensions; the second concentrates on the visible surfaces in range imagery; and, the third
emphasizes the volumetric aspects of the objects present in the datz;. The work of this thesis
employs surface representations. In this section, all three representation schemes will first be
given cursorial treatment to see how they fit within the scheme of things in three-dimensional
image understanding. Surface representation will then be discussed in greater extent with an |
emphasis on making a distinction between the reconstruction of surfaces and their application to

recognition.
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2.2.1 Representation Schemes

Two-dimensional representations of three-dimensional data usually take the form of edge
segments and/or regions (points grouped using some measure of likelihood that they belong to
the same surface) within the image. Global or local recognition schemes may be applied to match
these features with models. Global techniques usually extract feature vectors from regions which
are expected to represent whole objects and match these to similar model feature vectors. The
feature elements may comprise such measurements as area, ratio of area to perimeter, moments,
centroids, aspect ratio etc. In local techniques, edge segments and regions are often related to each
other in the form of graphs which are matched with models. The literature abounds with papers
on two-dimensional object representation and recognition schemes. While it is not our purpose
to review such techniques, it is appropriate to state how these two-dimension schemes may be
(and have been) applied to three-dimensional image understanding. Mulniview representations
(56, 57, 76, 77, 95, 136] are means of mapping three-dimensional objects into multiple two-
dimensional representations. These representations are termed variously as aspect graphs, visual
potentials, characteristic views etc. The idea is to store each view of the object as a separate
two-dimensional model and to perform the matching using these models. Sripradisvarakul and
Jain [154] discuss how these representations may be generated for curved objects.

The task of organizing data in three-dimensional image understanding is often viewed in
terms of representing the visible surfaces and edges (discontinuities) in the range imagery. This
is the most natural representation for range data in the sense that it operates directly on the data
and characterizes the pixels in the range images. This representation is favoured by this author
and is the one applied in this thesis, and will be discussed in the next section.

Volumetric representations of data and models for recognition attempt to describe objects as
three-dimensional entities. Representations include generalized cylinders used in ACRONYM

(to be discussed later), constructive solid geometry, voxel and octree representations. While such
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representations have been proposed, the only significant work done in object recognition with

volumetric representation is ACRONYM,

2.2.2 Surface Representations

Range imagery is data-rich across object surfaces in the images. Much work has been done
on the extraction and characterization of these surfaces.

First of all, what is a surface? A reasonable first approximation may be that a surface is a
smooth three-dimensional manifold where smoothness is defined as _thc lack of discontinuities in
the normals to the surface. This, is however, not always the case. The hood of an automobile
is often considered a single surface although there may be an omamental ridge-like protrusion
down the middle of the hood. Two planes melding at an obtuse angle via a smooth chamfer may
not possess any abrupt surface discontinuities, but we have just said that they are two planar
surfaces. A more general definition has to take into account the kind of surface one expects to
find. This will be dealt with in greater detail later in this thesis. This being said, smooth surfaces
as defined before are one type of surfaces one might have great interest in finding. It is this kind
of surface with which much of the literature deals.

Surface characterization schemes may be divided into two classes. The first represents the
exact location of the surface and the second details how the surface bends in space. While
the latter curvature-based representation has many attractive qualities such as rotation, scale
and translation invariance, little real work has been done using the representation for object
recognition. The main reason for this is that noise in digital data renders the computation of first
and second partial derivatives of the surface, on which curvature depends, unstable [25]. The
theoretical work on curvature-based surface characterization will be discussed later in this thesis
when surface curvature is discussed. In this section, we shall concentrate on representations

which describe the location of surfaces in three-dimensional space.
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The task of describing the location of a surface in three-dimensional space is often framed as
one of fitting range data to a surface description. These surfaces may be bivariate polynomials
(planes being the most prominent class), splines, quadrics, finite element grids, etc.

Besl and Jain [26, 22, 25] fitted bivariate polynomials of the form:

0O [k

7= Z (Z C‘_Inyk—n)

k=0 \n=0
where © is the order of the polynomial and {c;} are the polynomial coefficients. A variable
order, region-growing strategy was employed to obtain regions of the lowest order which will fit
smooth regions. This system was used in the course of this thesis and will be treated in greater
detail in a later chapter when the background material (mathematics and algorithms) of this thesis
is discussed.

Terzopoulos_[157, 158. 159, 160] applied a finite element grid technique to perform surface
reconstruction. The reconstruction is performed at multiple resolutions as a process of cooperative
relaxation processes which minimize a tension measurement between the reconstructed point and
the data. The work which can be applied to sparse range data can be viewed as one of smoothing
range imagery.

Duda et.al. [66] did some of the early work on incorporating range and reflectance data
from a laser range finder in scene analysis. Their system extracts planar surfaces from registered
reflectance and range imagery under a paradigm in which easy to extract surfaces are obtained
before harder ones are extracted, and where reliable regions are extracted before questionable
regions are analyzed.

The system begins by removing all pixels where jump boundaries are detected in the image.
\These are segmented into connected regions. From these the set of starting planes are determined.
Such planes are defined by their unit normal and distance from the origin of the coordinate system.
The easiest and most reliable to compute of these are horizontal planes whose normal vector is

completely defined leaving the distance from the origin (the z value of the plane) to be determined.
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Horizontal planes are detected by analyzing the histogram of the 2 values in the depth image.
Vertical planes have one component of the orientation (incline) of their normal vectors defined,
leaving the determination of the distance from the origin and the horizontal component of the
normal vector. A Hough transform is used to detect these vertical planes and their unknown
parameters. For arbitrarily oriented planes, it is assumed that the surface reflectance is constant,
and histogram analysis of the reflectance image is used to detect these planes and least squares
fitting is applied to determine its parameters.

Once the starting planes have been determined, a refinement process is initiated, beginning
with the ‘most reliable’ of these starting planes. First, a planar ‘sandwich’ or band is computed
around some tolerance of the estimate of the plane. All pixels within this three-dimensional
‘sandwich’ are collected and grouped into connected regions. These regions are then refined by
the application of three tests: the size filter (small regions are rejected); a plane fitted to the
region must be reasonably close to the original estimate; and, a planarity test based on the mean
and standard deviation of the distance of the points from the best fitted plane is applied.

Bolles and Fischler [37] describe the application of random sample consensus (RANSAC),
a robust statistical fitting strategy, to the recognition and pose determination of cylinders in
structured light imagery. The RANSAC strategy begins with the initiation of a model using
a minimum number of points, followed by an iterative least-squares process to improve the
estimates while recruiting more points that fit the model.

For the recognition of cylinders the fitting of data to a non-linear combination of
parameters is avoided by épplying the observed that the planar biquadratic function
(a + bz + cy + dzy + ez? + fz? = 0) (which is linear) is capable of fitting conic sections. Since
the illuminated contour in a light stripe image is a planar cross-section of imaged objects, the
quadratic function is capable of estimating the ellipses which constitute oblique sections of cylin-

ders. The ellipses which are extracted applying RANSAC to the planar biquadratic fit to the data
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are then used to es_timatc the pose of the cylinders. This time, RANSAC is again used in the
non-linear least-squares combination of the ellipses.

This system performs entirely in the context-sensitive domain. The objects imaged are cylin-
ders of known radius and the fitting locates these cylinders. The application of the biquadratic
fit to estimate the ellipses and the combination of the ellipses apply only to cylinders.

Henderson and Bhanu [93, 94, 29, 30] describe a three-point seed method for extracting
planar surfaces from range data. The method begins by extracting a set of three-dimensional
(x,y,2),points and organizing them in a k-d tree, using the x, y, z values of each point as the
k keys. Sets of three non-collinear points close to each ot‘hcr are selected and to define seed
planes. These seed planes are then grown by recruiting sets of points from the &-d tree. Since
the system handles convex polyhedra, convexity is applied as a constraint on the three-point seed
candidates.

Potmesil [137, 138] fitted rectangular bicubic parametric patches to range data. The work
concentrates on the integration of such patches computed in surfaces from different viewpoints.
One may think of each such patch as a bicubic tile. These tiles are merged using a quadtree
structure. Each level in the quadtree contains nodes which represent patches at a quarter of the
resolution of the next lower level. Curvature maxima are used to match patches from different
viewpoints in the integration process.

Fan et. al [74, 73] apply quadric surface patches of the form:
az? +by* +cz® +dry+eyz+ fzz+ gz +hy+iz=0

in their work on three-dimensional object recognition. The segmentation of the range image into
different regions is performed by boundary detection. Boundaries are detected by first computing |
the ‘surface curvature’ across the entire image and then looking for zero-crossings and extrema in
the curvature map. The boundaries and patches are used in a graph matching scheme (boundaries

are arcs and patches are nodes) which will be described later in this chapter when recognition
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systems are reviewed. At this point, it is sufficient to note that the principal curvatures of the

quadric patches are computed to determine if the patch is planar. '

2.2.3 Comments

These techniques lead to representations of the surfaces to a degree at which they can be
reconstructed. The papers listed are replete with impressive reconstructed images. The problem
is that little has been done with such surfaces in object recognition apart from Fan et. al. and
the work on polyhedra, The reason is that the representations can be thought of as yet another
form of data to be analyzed. The parameters aescﬁbing these surface representations are often a
collection of numbers which in many cases are well nigh incomprehensible. The only semantic
information immediately available is that the surfaces are smooth. The reason for this is that
these surfaces estimate the pointwise location of the surface, and not what the surface really is.
The exceptions are in the cases of the work on polyhedra and the quadric-based work of Fan et.
al.

The reason polyhedra-based recognition systems are viable is that polyhedra are made up
of planar surfaces. The plane is an interesting degenerate member of polynomial surfaces in
that they often represent what the surface really is (e.g. a side of a file cabinet). Systems for
recognition of polyhedra exploit the fact that only polyhedral objects are expected. One may
think of plane detectors as specific feature extractors.

The reasons that quadrics are applicable for object recognition in the work by Fan et. al. are
twofold. First, the quadric patches served only to label regions as ‘smooth-surface’ which served
as attributed nodes for their graph structure. Second, they exploited the fact that quadrics fitted
well 0 cylinders (although this was not explicitly stated as the reason for using quadrics) and
computed the orientations of cylinders as the directions of least curvature of quadric surfaces.

It appears that they refitted planes to patches with zero principal curvatures to determine the
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orientation of planes. Again, quadrics map specifically (and narrowly) into the class of real
surfaces in the object set to be recognized. The restriction of the object set makes this possible.
If the object set included such objects as toroids and bending pipes which are not amenable to

quadric description, the system will not work.

2.3 Recognition Systems

We shall now discuss a sampling of three-dimensional recognition systems based upon ap-
proaches which include the use of extended Gaussian images, Hough transforms, extended Hough

transforms, graph matching, hypothesis and test and blackboard architectures.

2.3.1 Some Recognition Systems
Andress and Kak 1988

Andress and Kak [4] describe an approach to interpret three-dimensional scenes when the
two-dimensional projection (orthographic or perspective) of the structures in the scene can be
generated. The two-panel, six-level blackboard system utilizes Dempster-Shafer formalism to
perform inexact reasoning in a hierarchical space. All objects must be polyhedral as the system
employs only linear line segments and edges as its basic building block for recognition.

The levels of the blackboard contain information in the form of: Vertices, segments, edges,
faces, objects and scenes in the dara panel and vertices, edges, faces, objects and scenes in the
model panel. Three knowledge sources (KS) operate on the data. The data-reduction KS cleans
up the line segments generated by the edge detectors, the grouper KS groups lower level data
into data elements at increasingly higher levels, and the labeler KS performs element Iabcling'
and confidence estimation for different hypotheses generated by the grouper KS.

The basic primitive features utilized by the system are the line segments provided by edge

detectors. The abstracting principle assumption applied is simply that discontinuities in intensity
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values are significant. Linear edges (the system operates only with linear edges) are generated
by grouping collinear line segments which are close together. Collinearity and edge contiguity
are again independent of the scene. Vertices are the ends of line segments and linear edges. This
abstraction, based upon basic geometry, which is context free by our definition. The grouper KS
basically performs evidenced-based hypothesis generation building higher abstraction structures
from lower.

Faces and objects can be recognized in the system by context sensitive assumptions. To
generate faces, the labeler KS associates model panel structures with the higher level data panel
structures. Faces in the model panel elicit faces in the corresponding layer in the data panel by
hypothesizing the mapping between model panel edges and data panel edges. Clearly, such a
process is context sensitive and driven by the_ model, otherwise, the possible orderings of frag-
mented edges to form faces is combinatorially explosive. The object layer structures coalesced
from the face and edge layers are similarly context sensitive. Object poses are determined at the

object and scene layers.

Archibald and Rioux 1986

The WITNESS system [5] recognizes polyhedral objects in range imagery by maiching objects
for which ‘view models’ are available. These ‘surface adjacency graph' (region adjacency graph
of planar surface regions) models are sensor-tuned in that they are generated ‘showing’ the system
a prototype in stable resting positions. Each view model is rotation independent within the plane
of support for the object. A two stage hypothesis generate-and-test strategy was employed. A
set of possible models ane first identified using ‘generic information’. The resulting hypothesized
surface adjacency graph models are then matched in tum.

The basic feature applied in this work are planar patches. First, the surface gradient at each

point of the image is computed using a gradient operator which performs implicit Gaussian
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smoothing. The resulting gradient-space images are then segmented in regions of similar surface
normals - these constitute planes. Such an operation for the identification of planes is context free,
depending on the mathematical properties of planes for its computation. (This is not strictly true
if surfaces of other types were allowed since curved surfaces of large curvature and perspective
warping which result from inadequate calibration can make planes extremely hard to identify
reliably.)

Both the generation of the model sub-set and the matching of the surface adjacency graphs
are extremely context sensitive. Generic view model properties (e.g. the number of faces, the
‘total projected surface area, and the maximum height in a view) are utilized in the first stage
to trim the number of candidate view models. In the testing of the hypotheses, surfaces in the
data are matched to model surfaces following a constraint-guided protocol which determines
the order of matching to reduce the combinations. The reliability constraint determines that
surfaces with large areas, low magnitude of slope and high compactness are matched first. The
structural constraint dictates that surfaces in the models are bound to data surfaces by order of
adjacency and the relational constraint tests the matching by examining the differences in such
geometric properties as surface area and slope. Obviously, one must know the set of objects
being considered before either of these can be performed.

The emphasis of this system is on the high level processing. Such a system will quickly be
overwhelmed as the complexity and number of objects to be recognized increase. It will also be

sensitive to variance in the context by such artifacts as noise, occlusion and calibration error.

Archibald and Merritt 1989

The system performs pose determination for a block and a robotic grapple mechanism, each
of which has clearly defined straight edges of surface discontinuity (as opposed to occlusion

edges as would occur when one scans off the rounded edge of a cylinder — in which case there
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would be an ‘edge’ in the data where there is none on the object). Range data is acquired using
the NRCC range profile sensor which takes data along a ‘stripe’ mounted on a robot manipulator
wrist.

The system makes use of discontinuities in the average inclination of the surface to the sensor
origin for successive readings along the scan line to extract valley edge points. CIliff edge points
are detected as ‘horizon’ points. When the change in average inclination exceeds some threshold,
the cliff edge detector kicks in to find the last point visible from some point at the ‘base’ of
the cliff. The abstracting assumptions applied are general, exploiting the basic properties of
the geometry of triangles in the computation based on surface inclination and exploiting the
characteristics of the scanner (laser light travels in straight lines) in cliff edge detection.

The models maintained by the system are sets of parametric lines defined on and object-
centered coordinate system. The edge points computed by the context-free computations form
the input to the subsequent hypothesis-test based context-sensitive computation. An edge point
is selected and an assumption is made to map it onto one of the model’s edges. A second point
is picked, and using the distance from the first point as a criterion, a set of candidate mappings of
the point to the set of lines in the model is computed. A third point is selected, and its possible
mappings to the model’s lines are computed in like manner using the hypothesized second points
in the model. The hypotheses which cannot ‘close the triangle’ (with all three points resting on
lines in the model) are rejected. The accepted three-point sets yield transformation hypotheses
to map the sensed points to the model’s edges. If more than 80% of the points are close 10 a
model’s edge after transformation, the hypothesis is accepted.

One may think of the three-point sets as triangle features subtended at the comers by edges .
of the wire frame of the object. The possible three-point combinations would become too large
if the model were not used to constrain the hypotheses. These triangles are thus context-sensitive

based upon the assumption of the wireframe and suggested by the evidence provided by the edge
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points.

Asada et. al. 1988

Asada et. al. [8] present a system to extract planar surfaces and their orientations and singly
curved surfaces from light stripe images. Surface normals (instead of range) are computed
directly from the scene images with a light pattern projected into the viewing space (actually
from the edges of the light-to-dark transitions). These normals are then plotted in gradient-space
and the clustering of the data points are examined to determine the types of surfaces present and
their orientations. Planar surfaces result in data clustered around a point in gradient-space while
cylindrical surfaces appear as points clustered around a line. The location of these cluster points
and the orientation of these lines determine the pose of these surfaces.

This technique is sensitive to errors introduced by the assumption of orthographic projection
(the gradient-space plots do not cluster so well under perspective projection), accuracy of the
stripe locations, camera lens calibration, non-parallelism of the light stripes, the non-uniformity
of the camera pixels and the inaccuracy of the light-to-dark shadow-edge separation owing to
surface reflectance and angle. The system is incapable of providing depth information and parallel
planes become easily confused.

No discussion is made of using the features for object recognition. Because the assumptions
made in the segmentation are based solely on the clustering of surface points in gradient-space,
the method is context free. However, context is implicitly imported in that all surfaces are

assumed to be planes or singly curved (cylinders).

Augusteijn and Dyer 1986

Augusteijn and Dyer [9] present a model-based system which performs three-dimensional

recognition and pose determination of planar point patterns or polygons. The algorithm computes
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the correct surface orientation as well as the correspondence between the set of model features
and the set of image features. The system, which assumes orthographic projection, employs
an iterative algorithm which simultaneously determines the correspondence between the model
and data points and computes the surface orientation of the point pattem. The principle behind
the algorithm is that if two lines in an image under orthographic projection are mapped to two
corresponding lines in the model object plane (all objects are planes), the rotational transform
(tilt and slant) between the image plane and the object planes can be determined.

The system identifies the points of interest (usually high curvature points like comers) and
computes the angles they make with the image plane coordinate axes with the centroid of the
object as origin (the images are thresholded to obtain a binary pattern). Four of these are paired
with four points in the model (with four corresponding angles with the object plane axes centered
at the centroid of the model). This yields two equations with the angles of tilt and slant as the
two unknowns which converge iteratively to a solution if one exists. If there is no convergence,
the match fails and other points are selected.

Although Augusteijn and Dyer did not describe the pre-processing in the system (the binary
images appear to have been synthetically generated and the points of interest were picked by
hand), one may imagine that some histogram-based thresholding and comer detection processing
may be performed. These are to a large degree independent of the object being viewed (assuming
constant surface reflectance, illumination etc.)

The system is almost completely context sensitive, depending on the spatial distribution of
model points to determine correspondence and orientation.

Owing to the high context sensitivity of the system (jumping directly from points to recogni-.
tion, correspondence and orientation), the system is expected to be fragile. It would be sensitive
to inaccuracies in the computatidn of the centroid (which in tum drepends on the thresholding

to obtain the binary image). Because it mixes both the need for a global feature (centroid),
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and local features (corners), it will suffer from the weakness of both approaches. For example,

centroid computations are extremely difficult under occlusion.

Ballard and Sabbah 1983

Ballard and Sabbah [12] describe an extended Hough transform-based approach using con-
straint tables 1o detect the presence of a known object and to compute its pose (orientation,
translation and scale from its canonical description). The class of objects considered are polyhe-
dra. The problem is framed as one of determining the transformation between the object-centered
frame and the viewer-centered frame. The data is assumed to be orthographic projection and it
is assumed that the image has been segmented into edge components for the two-dimensional
case and into planar components for the three-dimensional case.

The algorithm decouples the interdependence among scale, orientation and translation. In
orthographic projection, scale is dependent only on the depth map. For the computation of
orientation, the extended Gaussian map (basically an attributed edge or surface normal plot for
two and three dimensions respectively) is used.

For the two-dimensional problem, the length of the edges is used to attribute the normal
directions of the edges in the Gaussian map. The offset between the extended Gaussian map of
the image and that of the object centered model is the rotation offset of the object in the image.
The Hough accumulator array is one of possible orientations. Edge lengths are used to match
image edges to model edges and the difference between the orientations of the model edge and
the data edge are entered into the array. The maximum in the accumulator array corresponds
to the object orientation. For translation in two-dimensions, (the image and model are assumed
to be of the same orientation and scale) the accumulator array is a two-dimensional array in z
and y. For each data edge, the z and y offsets of the model edge with the same orientation

and length from the object frame origin are summed with the z and y locations of the data
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edge respectively to provide an index into the accumulator array element which is incremented.
When all the edges have been considered, the maxima in the accumulator array corresponds to
the offset of the viewer frame from the object frame.

Orientation determination in three dimensions is more complicated although the principle
is similar to that in two dimensions. The normal o'f each plane defines a planar locus for the
orientation of the viewer frame from the object frame. Nine parameters (three in each dimension)
need to be determined by the extended Hough transform. For each match between a model
normal and data normal, the loci of three sets of three direction cosines may be ascertained. The
Hough accumulator entries along this entire loci are incremented (there are three accumulators
corresponding to the three sets). The three dimensional translation Hough transform is identical
to that in two dimensions but for the added dimension.

The context free features in this work are the edges and planar surfaces which can be computed
using general assumptions of surface discontinuities and surface normal coherence.

The entire extended Hough transform technique is clearly context sensitive (defined for

particular object models).

Bastuscheck et. al. 1986

Bastuscheck et. al. [16] presented work on the recognition of general three-dimensional
space curves using registered range and intensity imagery obtained using a structured light optical
triangulation sensor. The system matches an observed curve with a model curve, moveﬁng the
displacement (in terms of arclength) between the curves for which the curves are ‘closest’ (in
terms least squares difference). The algorithm attempts a match for each unit of displacement,
picking the best match. It was also shown that the least squares equation for the match can be
reduced to three summations and a trace computation of a convolution (which is computed via

fast Fourier transform) for each possible displacement.
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The system did not attempt to solve the problem of obtaining good range information at
three-dimensional edges. The experiments reported recognized ‘edges’ of construction paper
figures glued to the surface of terra-cotta flower pots.

Apart from the computation of edge points, this system is completely context sensitive at-
tempting to match edge data directly to model curves. Given the space of possible boundary

configurations, this system is expected to be fragile and not scalable to larger object sets.

Bhanu 1982, 1984

Bhanu [29, 30] presents a system to perform three-dimensional scene analysis on laser range
data, yielding the identity and orentation of the object in the scene. Objects are represented as
polyhedra and the features applied in the matching are planar surfaces extracted by a three-point
seed algorithm. Models are generated from images taken of a physical prototype, and the planar
faces detected in each view are arranged in ‘neighbor’ tables. There is no indication in the papers
that the sets of faces in the different views are unified.

Recognition task is framed as one of obtaining a consistent labelling between faces extracted
from image data from an unknown view and model faces. A stochastic labelling technique
applied. The compatibility of a data faces to model faces were computed in two stages — the
first considering the matches pairwise (two model faces and two data faces, one model-data
pair being the ones compared and the other pair for context) and then in sets of threes (one
model-data pair being the ones compz_ircd and the other two model and data faces for context).
The function, which determines the compatibility among the two (first stage) and three (second
stage) neighbouring data faces, computes the transformations (scale, translation, orientation, and
rotation) which minimize the difference between data and model faces. In the first stage, two
transformations are computed — one for each model-data pair, and in the second stage three such

transformation are required. In the experiments, the 29 ‘best’ surfaces extracted from the data
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are matched to model surfaces.

To the degree that the planes are computed applying the mathematical properties of coplanar
points (the three-point seed method), the computation of the planes is context free. However, the
a priori knowledge that all the surfaces in the images are planar makes this somewhat context
sensitive.

The matching and computation of compatibility is clearly context sensitive, being based
completely on the models.

Bhanu also describes a similar two-dimensional system which operates with linear edge

scgmchts instead of planar faces [28].

Boissonnat and Faugeras 1981

Boissonnat and Faugeras [34, 35] describe a triangulation technique to approximate range
data as polyhedra. The approach is graph based where each graph node in the graph is a range
data point. Applying Gaussian curvature the data are segmented into sub-groups of saddle and
cup-shaped points (the method will not work on parabolic surfaces). These sub-groups are then
triangulated applying a graph splitting operation to yield a triangle-facet description of the range

data.

Bolle and Cooper 1984

Bolle and Cooper [36] presented work on the mapping of intensity image data to three-
dimension planar, cylindrical and spherical shapes. The image is partitioned into a grid of
windows into which quadric polynomials are fitted over the intensity values. The relationship
between the three-dimensional shapes in question and the rqua'dn'c representation of the intensity
surfaces under orthographic projection and pure Lambertian reflectance to a point light source

was investigated. Assuming that each window views a piece of only one surface, or at most two
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surfaces, each window is labelled as ‘planar’, ‘cylindrical’, ‘spherical’ or ‘unknown’ by applying
this relationship to the quadrics fitted to the window. Upon the assumption that the noise in
the intensity images obey a zero-mean Gaussian distribution, a Bayesian model is applied to
reparameterize the quadric to yield a set of three constrained quadrics corresponding to the three-
dimcnﬁonal forms. By comparing the unconstrained quadric fit with the each of the constrained
fits in each window, a likelihood measure is obtained.

This work is a context sensitive feature computation in that the types of surfaces to be labelled
are known a priori (otherwise the number of constrained fits would be prohibitive). While the
assumptions (eg. windows mapping into only one surface, pure Lambertian surfaces, point light
source, Gaussian noise distribution, independence for-Bayesian probability) imposed make it
unlikely that the technique will be applicable under real-world conditions, the argument for the

utility of feature sensitive intermediate feature computations to identify objects is sound.

Bolles et.al. 1984

Bolles et. al. [39, 97] describe 3DPO which performs three-dimensional part orientation
(hence its name) on range imagery obtained from a plane-of-light triangulation sensor. The
approach, basically a three-dimensional rendition of the local-feature-focus method [38] which
operated on two-dimensional imagery, bases the generation of hypotheses on a small number
of features or feature clusters. 3DPQ partitions the recognition process into primitive feature
detection, feature cluster formation, hypothesis generation, hypothesis verification, and parameter
refinement. The primitive features extracted by the system are edge-based. An example of such a
feature is a coplanar sequence of edge points which make up a circular arc of a particular radius.
Object hypotheses are generated by examining all pairwise combinations of these features with
model features. These hypotheses are in turn used to grow the feature clusters (adding a feature

at a time) around the focus feature by applying the information contained in the models.
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The context free features in 3DPO are edge points which are computed by applying two
assumptions. Jump edges are extracted upon the assumption that there is a discontinuity in the
light stripe at such edges. Other edges are obtained by the conventional technique of finding
zero-crossings in the first derivative of the filtered intensity image. Another context free feature
is the linear edge segment.

Virually all other processing in 3DPO is context sensitive. Specific ellipse detection is
required, for example, to find cylinders. In fact, this is the basic tenet of 3DPO - that context
information provided by the object models be used to constrain the search and matching. The
generation of focus feature hypotheses and the building of the object graphs around these focus
features are dependent upon the models of the objects expected, as is the recognition of the object

by graph matching.

ACRONYM - Brooks et.al. 1979-1983

ACRONYM [46, 47, 48, 49, 50, 51] employs a volumetric representation in which all objects
are decomposed into a set of generalized cones. These cones are described by a length, an
orientation, a cross-sectional shape and a sweep rule which determines the variation in the cross-
sectional area (of the same shape) along the length of the cone. This representation scheme is
capable of handling hierarchies of detail by applying combinations of generalized cones (e.g.
conjuncts, intersections etc.) of increasing detail deeper in the hierarchy. Since the perspective
projection of cones yield generalized ribbons, ACRONYM is able to ‘predict’ the perspective
view of the object on-the-fly.

In the matching process, ACRONYM’s low-level processes extract the features to be matched.
and organize them as a ‘picture graph’. The prediction/planning process generates perspective
projection called the ‘observability graph’ from the volumetric model stored in the form of

an ‘object graph’. The matcher then generates an ‘interpretation graph’ which determines the
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identity of the object being viewed. Although there are lines of control or data (it is not clear
which) from the interpretation graph to the low-level vision processes in the block diagram of
ACRONYM in a 1979 paper [46], no such control is described in that or subsequent papers.
ACRONYM can thus be assumed to run open-loop. The matching process thus becomes one
of matching the picture graph (from sensed data) to the observability graph (derived from the
object model).

The only context free features in ACRONYM are the edge points used as boundaries of the
generalized cones.

Because generalized cone representation is ambiguous (many generalized cone configurations
may describe the same object), the computation of the cones must be guided by the models. The
graph matching activity is clearly dependent on the object models.

Several things can be said about ACRONYM. By the admission of the designers of the
system, ACRONYM suffers from inadequate low-level vision. This has been blamed for much
of ACRONYM''s ills; but, this researcher believes that the problem is more fundamental. Low-
level vision is generally fragile and extremely sensitive to environmental and sensing variations.
There is vno reason to believe that a low-level feature extractor (edge detectors in the case of
ACRONYM) will be developed which will solve the problem. The model representation scheme
which is a key strength of the system also constitutes one of its greatest weaknesses. As the
objects to be represented increase in complexity and number Lhc_ generalized cone representation
scheme quickly becomes overwhelmed. This approach to model representation may just not be
rich enough to handle an unconstrained object space. As a consequence, ACRONYM is known
to have ‘understood’ only one image from one perspective.

We have already seen how the system under discussion abstracts its visual data by a means of
feature extraction into a picture graph 1o be matched with an observability graph. ACRONYM,

thus, quickly distances itself from the visual data. This is perhaps the greatest weakness of the
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system. It does not exploit the knowledge contained in the image models to guide its low-level

processes.

Brou 1984

Brou [52] discussed the application of the extended Gaussian image (EGI) to determine
the three-dimensional orientation of objects. The EGI is based upon Minkowski’s theorem
which states that the 2-tuples of pointwise Gaussian curvature of a surface and unit surface
nonnal‘s uniquely describe convex forms. This principle has also been used by Ikeuchi and Homn
(100, 102, 103] to object recognition algorithms based on the EGI. The space of all normals of
a smooth convex form maps into a sphere known as the Gaussian sphere.

Since it is impossible to represent and match the surface normals across the Gaussian sphere
in a continuous fashion, Brou discusses methods to partition this sphere for sampling. The sphere
is approximated by an icosahedron, each triangular face of which is again subdivided into more
triangles which constitute geodesic domes for each icosahedron face. The EGI image is then
smoothed with a Gaussian filter for matching.

This is basically a histograming approach in the space of surface normals, and is a pointwise
matching scheme. While the computation of the extended Gaussian image is context free, the
matching is dependent on the model. Each model has to be tried until one matches. An oft cited

problem with the approach is that EGI does not preserve spatial connectivity.

Chakravarty and Freeman 1982

Chakravarty and Freeman [56, 77] presented a multi-view modelling approach based on
characteristic views. The space of all possible perspective projections of an object is factored
into a set of characteristic views each of which defines a set of topologically identical projections

related by a linear transformation. This effectively maps the three-dimensional object into a set
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of two-dimensional models for matching purposes. Experiments in which the silhouette of a
polyhedral object is matched to its characteristic view edge models was presented. Fine pose
is obtained within the characteristic view by computing the linear transformation of the labelled
edges in the data to the model edges.

The computation in which edge points are extracted and grouped as chain-coded a object
boundary is dependent only upon assumptions of surface discontinuity and connectivity of edge
points forming the boundary. The labeling of the data edges (matching) and the computation of

the perspective transformation within the characteristic view are context sensitive.

Chen et. al. 1980

Chen et. al. [57] describe a system for estimating the pose of a workpiece using the feature
points method. A stereo algorithm is applied to obtain the three-dimensional position of such
features as comers and small holes. The feature point which is accorded the highest confidence
value by the feature extraction process is matched to all model points of the same type. Each
of these possible matches was tested for consistency with other data points in relation to the
object model (the tests applied for such consistency test are Euclidean distance and the presence
of edges linking the feature points). Of those matches which had sufficient support, three points
were selected to obtain a workpiece to model transformation hypothesis. Each hypothesis is
then tested to see if the computed transformation accounts for the other points in the workpiece
feature set.

The context free features are the comers, small holes and edges and their three-dimensional
positions which are computed applying general image processing principles and binocular stereo.
The feature clusters formed with the aid of the models are in essence context dependent higher

level features.



Coleman and Sampson 1985

Coleman and Sampson [63] presented a mathematical morphology feature-based method for
locating grip points of objects for bin-picking. The algorithm operates on range imagery and
determines with the application of a morphological structuring element locations where the robot
gripper would fit. Only the position and orientation of the grip points are determined. No attempt
is made in recognizing the parts.

The operation is context sensitive in that it look for positions on prespecified objects jumbled
in a bin which ‘fit’ a particular robot gripper model. The system is thQS extremely sensitive t0

context. Any change in grippers or objects in the bin will require major changes to the system.

Dhome and Kasvand 1986

Dhome and Kasvand[64] applied a generalized Hough transform method to recognize poly-
hedral objects in range imagery. Pairs of adjacent planar surfaces are used as primitives in the
generalized Hough transform. Each such pair provides a hypothesis comprising the orientation of
the model view axis, the model orientation around the view axis and the model center position.
These parameters form a three layered hierarchy. The Hough spaces of each of these are com-
puted in tum. A clustering program is used to determine the ‘winner’ of the Hough transform
for every layer.

To the extent that polyhedra are expected in the scene, the extraction of planar surfaces
depends only on the general principle governing their surface normals. This and the detection of
adjacent planes are therefore context free. The generalized Hough transform is strongly dependent

upon the object models. This is thus very context sensitive.
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Douglas 1981

Douglas [65] presented a ‘model-building’ approach for three-dimensional scene interpreta-
tion. The EYE system integrates depth and semantic information to form a three-dimensional
model of a scene from colour pictures of outdoor scenes.

The preprocessing stage of the system performs a set of image-to-image transforms to yield
a stack of arrays corresponding to colour, averaged images, texture, edges and angles. This
stack, known as the ‘recognition conc;, is further processed to obtain a set of ‘visually similar’
regions. A model of the scene is then built in a four step algorithm. First, a set of label hy-
potheses is assigned to the regions; second, depth cues (shading) are used to estimate the regions
three-dimensional structure; third, the initial depth estimates are corrected by an iterative relax-
ation process; and fourth, the region labels are finalized to constitute consistent objects. These
operations are performed by three routines which operate within a blackboard representation of
the scene. The placement procedure performs the first two operations; the adjustment routine
performs the third; and, the object formation routine does the fourth.

The placement routine uses two kinds of information to estimate the depth of a region.
The cues employed are: occlusion, expected size of the object, ground plane hypothesis (grass
patches are expected on the ground plane), texture gradients, shadows and highlights and linear
perspectives. Context free (e.g. occlusion, texture gradients) and context sensitive (¢.g. object
size, ground plane hypothesis) cues are thus applied at the same time. The adjustment routine
relaxes the labels of the regions and their depth estimates by introducing relational information
among the regions. The object formation procedure matches clusters of regions to object models

which take the form of associative nets. These nets comprise PART-OF and ISA links.
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Engelbrecht and Friedrich 1988

Engelbrecht and Friedrich [68] describe a Hough transform-based method for recognition
of polyhedral objects in three-dimensional space. The standard Hough transform is applied to
edge points detected in the intensity image to obtain the set of straight lines. The Hough space
is further analyzed to determine such higher level features as parallel lines (vertically aligned
cluster points in Hough space), n-line intersections at a vertex (colinear clusters in Hough space),
two vertices linked by one line (two point colinearities sharing one cluster point), and n-colinear
vertices (n cluster point colinearities sharing one cluster point). These lines are organized into an
attributed graph (nodes are vertices, arcs attributed by length, slope etc.) and matched to model
graphs. To avoid explosive combinatorics, the attributes of the arcs are used as a key to detect
isomorphic sub-graphs.

The only experiments reported were on synthetic imagery.

Ettinger 1987

Ettinger [71, 72] presented the SAPPHIRE system which performs hierarchical object recog-
nition using libraries of parameterized model sub-parts. The two-dimensional recognition system
operates in the domain of object boundaries extracted by means of an edge detector (Canny’s
edge detector). Objects are modeled both in terms of a sub-part and scale hierarchy. Both
of these are facilitated by the application of features derived from Asada and Brady's Curva-
ture Primal Sketch [7). These features, derived by observing the results of convolutions of the
first and second derivatives of the Gaussian filter at various scales on the region boundary, are
‘smooth joint, comer, crank, bump, end and dent.” Such features are inherently multi-scale and
SAPPHIRE records the largest scale at which each feature appears to derive a scale hierarchy.
The sub-part segmentation is obtained by a set of rules which govemns points on the boundary at

which to make breaks. An example of such a rule is that ‘two crank features, close 1o each other,
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facing opposite directions with one or more other features on the boundary separating them is
a good place to make a break’ — this determines a constriction point where two portions of the
same boundary come close together.

During recognition, an indexing step is first performed using a variant of the Hough transform
to obtain a set of probable interpretations. The transform counts the ‘votes’ for each type of
feature in the scene to hypothesize sub-parts. Next, a model-constrained interpretation tree search
is applied in which each probable model is tested to see if its nodes can be populated by detected
featurgs at a consistent pose and scale.

The context free features used in the system are the edge points and the curvature primal
sketch features. The sub-part segmentation and matching are dependent on the model set and is

thus context sensitive.

Fan et. al. 1989

Fan et. al [74, 73] describe a graph-based object recognition system which operates with
dense range data. The nodes of the graph represent the surfaces in the image and the arcs
detail the inter-node relations. Objects models are stored in multi-view format (a model for each
view). The problem is posed as one of decomposing the graph representing the scene into a set
of subgraphs which corresponc'l to different objects in the scene.

The scene is segmented into surfaces by first detecting the boundaries which separate them.
These boundaries are characterized as jump boundaries, limbs and c}eases. The computation of
the boundaries is curvature-based. The entire scene is treated as a single sheet and the local
surface curvatures are computed across the entire scene. Discontinuities in range readings which.
correspond to zero-crossings in surface curvature are labelled as jump boundaries. Discontinuities
in surfacé orientation which correspond to extrema in surface curvature are labelled as creases.

Jump boundaries at which the surface normals of one of the surfaces gradually become perpen-
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dicular to the viewing direction (e.g. at the side of a cylinder) are labelled as limbs. Creases are
further labelled as convex or concave creases depending on whether they are maxima or minima
of surface curvature. Quadric patches are fitted to the regions formed by the boundaries. A graph
structure is generated in which the nodes correspond to the surface patches and the arcs represent
the common boundaries among the nodes. These adjacency relationships are the first cue as to
whether surfaces belong to the same object. Surfaces separated by convex creases and concave
creases are assigned the probability of 1.0 and 0.75 respectively that they belong to the same
object. Jump boundary and limb separated nodes are assigned same-object probabilities of 0 to
0.5 depending on the distance of the jump between the surfaces. The nodes are further attributed
by their surface area, orientation (surface normal for planes, axis for cylinders and direction of
least curvature for all other surfaces), average of principal curvatures, estimated occlusion ratio
(a measure dependent on the boundary type and length of shared boundary), centroid, type of
adjacency (what kind of boundary lies between nodes) and the probability that adjacent nodes
belong to the same object.

The matching takes place in three steps. First a screener selects an ordered list of object
model candidates using a set of heuristics. The heuristics are that the ratio of visible area of
largest node (surface), number of planar nodes and the number of surfaces in the image graph to
the model graph must exceed some threshold. Second, a graph matcher which attempts to detect
sub-graph isomorphism between the image graph and the object graphs applying the following

steps:

1. Pair-wise compatibility: All possible pairings between scene and model nodes are tested

for compatibility. The measure of compatibility is based upon the attributes of the nodes

described earlier.

2. Sets of 4 scene-model node pairs are grouped applying such constraints as the difference

in patch orientations, distances between centroids, consistency of the types of the dividing



45

boundaries etc.

3. The best four-pair set are chosen for expansion to obtain the complete match between the

scene graph and model graph.

4. The actual two-dimensional geometric transform (in the viewing plane) is computed to

register the model with the surfaces in the scene.

5. A goodness of maich is computed to determine the viability of a match and to determine

if alternate model candidates ought to be tried.

Third, an analyzer is employed to prune the graph. This is a heuristic driven process which
splits the scene graph into object sub-graphs and merges originally disconnected nodes (nodes
for which the probability of their belonging to the same object was originally zero).

The computation of the boundaries and the original segmentation into regions are context
free since they are dependent upon general mathematical assumptions. The computation of
the quadric surfaces is dependent on the assumption that all regions within a boundary can be
approximated by quadric surfaces and that the boundaries exist. The computation of most of the
attributes of each node (area, centroid, principal curvatures etc.) is also dependent upon the same
assumptions. All graph manipulation processes are context sensitive, depending on the contents

of the scene and the models.

Jain and Hoffman 1988

Jain and Hoffman [106] describe a three stage three-dimensional object recognition system
for range images.

At the lowest level, the range images are segmented to yield morphological, surface patch
and boundary information. Morphological information characterizes the entire image in terms of

background/nonbackground pixels, connected components of background pixels, and the ‘number
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of background components within the convex hull formed on the set of nonbackground pixels’.
Surface patches, computed by clustering surface normals, are classified as planar, convex or
concave using ‘the eigenvalues of the covariance matrix computed on the patch pixels, the
variation of unit surface normals over the patch and outcomes of applying a nonparametric
statistical trend test to the patch.’ Boundary information details the relationships between pairs
of patches which include the classification of the boundary edges (crease or jump edges). This
constitutes the initial representation which is oversegmented.

At the next level, the oversegmented surface patches are merged by applying object-specific
likelihood metrics which determine if adjacent patches should be merged. An attempt is made
to coerce the patches to conform to the description for each object within some bounds. An
“alternate representation (or interpretation of the surfaces) is thus generated for each object in the
domain. This is are called the modified representations.

Finally, an evidence-based recognition procedure is applied. The rule-based system comprises
a set of evidence conditions which support particular object models. Each rule comprises a set
features involved in the rule, bounds for the numeric values for each feature, the minimum and
maximum number of occurrences of that feature and a set of evidence weights (one weight
for each object — 1.0, 0.5, 0.0, -0.5, -1.0 for 'strongly supports, tends to support, gives no
information, tends to refute and strongly refutes’ respectively) which specifies the amount of
support the satisfaction of that evidence condition gives each object. These rules generate a set
of similarity measures relating each alternate scene representation (one for each object) to the
object. A further constraint is laid on the recognition process by requiring that a major evidence
condition for an object must be satisfied as a necessary condition for the recognition of that
object.

In the first stage of the system, the computation of the initial representation is context free.

All subsequent computation, including the generation of the modified representations in the
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second step are context sensitive. This system does not provide pose information although the
authors suggest that such determination up to the gross orientation of the multiview models may
be obtained by tagging each model with this orientation information. Since the system makes
use of a feature vector-like discriminator, the explicit correspondence of the features to model

features are not easily accessible.

2.3.2 Comments

In the midst of all the diversity among the systems reviewed, the general theme of the
feature-model paradigm prevails. Each has a general purpose (or context-free in our parlance)
feature detector or image segmenter, followed by a process of manipulating these features either
as graphs or as numeric feature vectors. This process is dependent on the objects expected and
the scene contents. The laﬁcr process may often be construed to be a course of interpreting the
features in terms of scene contents and expectations. The idea of applying increasing context
information to refine the detected features does not arise except for the work of [106]. In that
work, the refinement is performed via a ‘shotgun approach’ in which an attempt is made to refine
the feature representation for each object model in the domain.

In the final analysis, though, it should be realized that even in the early processing, domain
knowledge has been already implicitly incorporated. The determination of the feature set, the
inevitable magic number parameters and thresholds, and even the selection of the sensing modality
are dependent on the domain or context. The cost of not making the context-based assumptions
explicit is the fragility of computer vision systems to modifications in the domain, sensor and
scene and the failure to exploit context information in the detection of features. One should not
attempt so much to build a general purpose system with no magic numbers and domain-specific
hacks as to endeavour to make intelligent decisions for the choice of such numbers and hacks

(and to know when these have been employed).



CHAPTER III

THE UNDERLYING STRATEGY

Objects to be recognized in the industrial environment are usually a composite of different
structures. This is especially true of machine parts and objects designed on computer-aided
design systems. It is therefore reasonable to attempt to recognize and determine the orientations
of these constructed structural components. The fundamental structures which make up most
parts or which are at least present in a predominant majority of parts are planes, cylinders, cones
and spheres. In the course of this work, planes and cylinders have been chosen as a representative
sub-set (they are by far the most common).

This chapter provides an extended outline of the research described in the rest of this thesis.
Lest the wood of purpose be missed for the trees of methods, mathematics and detail, we shall
lay a ‘bread crumb trail’ of reason behind the computations performed at each stage of the

processing.
3.1 Exploiting the Data
In working with laser range data, it is prudent to exploit the strengths of the technology and

data. Such data are rich in information on smooth surfaces and are poor at discontinuities. The

reasons for this are:
o There are far more data points (samples) on continuous surfaces than at surface disconti-

nuities.

48
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Figure 3.1: Laser range reading inaccuracies at surface discontinuities owing to scatter.
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Figure 3.2: Laser range reading inaccuracies at surface discontinuities owing to range averaging
over the laser spot-size
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¢ On smooth surfaces the point range readings are supported by those of neighbouring points

when some continuous surface function is fitted to the points.

e The active laser scanning beam scatters at points of rapid surface discontinuity (sharp

edges) (see Figure 3.1.) This leads to inaccuracies at such edges.

o Since scanning lasers are not perfectly coherent, the spot-size of the laser on the object
surface varies with range (See Figure 3.2). As the spot gets larger, the reading become

inaccurate. This reasons for this are:

- To reduce reading errors, scanners often take the average of multiple readings at
each location (In the scanner used for this work two readings are added and the least
significant bit is dropped). On smooth surfaces, such averaging makes sense, but at
edge discontinuities (especially at jump edges), this averaging leads to meaningless
range readings.

- Most laser range scanners make use of a sensing mechanism which detects phase
shift of an amplitude modulated laser beam reflected from a target surface. At jump
edges, two return signals of the same frequency at differing phase shifts are seen by

the scanner. These signals may interfere with each other at the phase detector.

- Owing to the rapid reading changes at jump edges, the sensor electronics (operational

amplifiers etc.) may not be able to respond quickly enough.

For laser range data, therefore, it is advantageous to operate on data taken from contiguous
surfaces. Points of discontinuity in the image or edges may be useful for determining the
boundaries of these surfaces; but, the range readings to these edges should not be used for the

pose determination.
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3.2 Extraction of Structure from Scenes

To determine whether a collection of points subtend (and are due to) a particular physical
constructed geometric form of the surface of the target object, the form could be fitted to the
data. This would yield a validation of the hypothesis (by examining the goodness of fit or fitting
error) and the position of the structure in space (by observing the parameters of the fit). As
will be discussed later, for linear surfaces such as planes (where the coefficients determining
the relation of the depth z reading to the z and y terms are linear), such fitting is simple.
Linear parameter estimation methods like QR minimization, normal equations and Singular Value
Decomposition can be applied directly to the data. For structures like cylinders and cones,
however, the surface functions are non-linear with respect to their orienting parameters. Fitting
techniques for non-linear parameter estimation like the Levenberg-Marquardt method require
relatively accuralte estimates of the parameters; otherwise, the parameters will not converge or
they may converge to local maxima in the parameter space. Furthermore, the set of possible
structures to fit can be arbitrarily large, the possible regions to attempt the fits are virtually
infinite, and the method of fit depends on the structure being fitted. Clearly evidence sufficient
to make structural decomposition hypotheses and parameter estimates are needed. Within the
paradigm of successive refinement/abstraction laid out previously, such structural features are

context sensitive.

3.2.1 Smooth Contiguous Regions

Before attempting the fitting of constructed geometric forms therefore, one needs to form a
hypothesis of the structures present and the regions they occupy in the sensed scene. It is clear’
that such an enterprise has to be general and must apply abstracting assumptions based solely
upon physics, the sensing methodology and/or mathematics.

The first assumption applied to the range data is that contiguous smooth surfaces can be
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approximated by high-order polynomials. This was shown by Besl and Jain [25, 26]. Applying
the algorithms and programmes described in {22] one can obtain fairly robust segmentations of
a laser-range image into smooth three-dimensional patches. Such an operation is clearly context
independent (does not depend on contents of the scene). This will be discussed in greater detail
later.

While high order polynomial surfaces are excellent for the identification of smooth surfaces
and for surface reconstruction, the coefficients of the polynomials carry little semantic content for
surface recognition. They are still just an impregnable collection of numbers. Further processing

is needed to extract semantic content other than surface contiguity from the data.

3.2.2 Surface Curvature-Based Labelling

Surface curvature computations provide a method for assigning semantic interpretation to
regions in the scene. By examining the signs of the Gaussian and mean curvature one can de-
tgrmine if surface regions are planes, ridges, valleys, peaks, saddles etc. We shall call images in
which surfaces have been labelled this way curvature sign maps. Since such symbolic labelling
is perspective independent, it is well suited for manipulation by high-level vision interpretation
processes. There is, however, a serious impediment to the computation of such features from
the image data using digital image differentiation techniques. Digital quantization noise makes
puted by such digital differentiation techniques are inaccurate [25]. In the work of this thesis,
these features are computed analytically from the close-form polynomial descriptions generated
by the high-order polynomial fits. This yields much better results because these surfacc.s describe
quite accurately the surface subtended by the data points and provide an implicit interpolation
between the digitally sampled points. The high-order polynomial surface description also per-

forms noise suppression in that it smooths the surface (in accordance to the surface contiguity
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assumption) and rejects high frequency noisy image regions. In this process, the abstracting as-
sumption applied is the nature of surfaces defined by differential geometry. It provides a higher
level of abstraction than the high-order polynomial fitting and is more context dependent in that
it assumes that the correctness of the segmentation of the high-order polynomial patches. The
mathematics and processing of these surface curvature features will be discussed in greater detail
later.

Curvature sign maps offer semantic perspective independent description of the various con-
tiguous surfaces in a range data scene and provide a coarse two-dimensional viewer-centered
symbolic description of the scene which is useful for matching to view-centered models. Herein
lies the weakness of such curvature maps. The features describe the surfaces only in terms of
type and not in degree. A larger cylindrical pipe further away would be labelled exactly as a
smaller cylindrical pipe. Both sections of cones and cylinders appear as ridges and there is no
way of telling the directions of maximal or constant curvature. It would be impossible, in a
curvature sign map, for example, to determine where two lengths of straight piping joined at
an obtuse angle should be separated, or when a conduit of circular cross section ceases being a
cylinder and tapers into a cone. These limitations also render features derived from curvature
sign maps incapable of three-dimensional pose determination (except at the coarseness of the
viewer-centered models). Curvature sign maps coupled with view-centered models of the object
set 1o be recognized and located do provide adequate evidence to hypothesize the constructed

geometric forms which give rise to the surfaces detected in the scene.

3.3 Linear Form Estimation

We are still, however, not ready to fit the constructed geometric forms to the range data
because such fitting requires three-dimensional parameter estimates (a cylinder appears as a ridge
region in curvature sign maps irrespective of the angle its axis makes with view-plane). Here, we

introduce the notion of segmentation and parameter estimation by the application of companion
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Figure 3.3: Fitting of minimal order functions is more appropriate for parameter estimation al-
though higher order fits may yield lower fit errors.

linear forms to the non-linear form to describe constructed surfaces. Pending formal definition of
such forms in the next chapter, companion-linear forms are linear parametric functions which will
fit to data arising from the presence of non-linear surfaces (e.g. cylinders and cones which are
non-linear with respect to their orientation and scale parameters) and which contain information
necessary to estimate the pose of the non-linear surface.

Since the purpose of fitting companion linear forms to the data is to estimate the parameters
of the underlying constructed structure, a ground rule is that the minimal order surface function
should be used. Taking the two dimensional analogy (see figure 3.3), a quadratic equation can
often fit a noisy straight line better than a straight line fit, but the straight line fit is more powerful
for parameter estimation; and a cubic function may yield a fit of lower error to a convex surface
than would a quadran'c,'but the quadratic fit results in less ambiguity in the shape matched (one
never knows which bend in the higher order function fitted the data). In the case of planar
surfaces the depth (z) value of the image is a linear combination of the x and y terms. The
companion linear form for such surfaces is therefore trivially defined as planes. For cones and

cylinders, however, the relation of z to x and y is far from linear in the orienting parameters
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(as will be shown later). In the course of this dissertation, biquadratic surfaces have been found
to be an excellent intermediate or companion form for cylinders and cones. A study of the
properties of biquadratic surfaces will show that the coefficients derived by fitting these surfaces
to cylinders and cones yield accurate approximations of the parameters of orientation of the
original constructed forms in space. It should be noted that such companion linear forms are
fitted to the range data only when a hypothesis of the existence of the constructed forms are
present in the scene. These hypotheses are derived from the curvature sign maps and object
models. The process of fitting companion linear forms is therefore very context sensitive.

Once the companion linear forms have been fitted and the parameters of the original con-
structed forms have been estimated, non-linear fitting can be performed to obtain more accurate

estimates.

3.4 Overview of the Sequence of Abstraction

Figure 3.4 shows the sequence of abstraction implemented in this thesis along with the
processes which traverse the hierarchy.

The processing begins with the transformation of the laser range imagery from the native
coordinate system of the laser scanner to real world Cartesian coordinates.

There are two distinct stages iﬁ the processing sequence beside the data coordinate trans-
formation. First, there are the context free processing stages which does not rely on knowledge
about what is actually in the scene. These are the segmentation to polynomial surfaces and
curvature analysis. The subsequent processing makes use of more and more information about
the scene and its contents,

It should be noticed that the coordinate-transformed data are used throughout the system. Al‘
each stage, the abstracting mechanism makes hypotheses about the interpretation of the unwarped
three-dimensional data. Thus, the system remains data-bound as it makes stronger and stronger

statements about the way the data ought to be organized.
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More will be said about this diagram at the conclusion of this thesis after all the labelled

processes have been discussed.



CHAPTER IV

MATHEMATICAL AND ALGORITHMIC BASES

In this chapter, we shall discuss the mathematics and algorithms employed in the work of
this thesis. In each section, both the primary mathematics and extensions applied to this work
are detailed. The chapter is divided into four sections. In the first section, both linear and
non-linear coefficient or parameter estimation will be reviewed. In the second section, Besl and
Jain’s variable order segmentation algorithm for extracting contiguous surfaces from an image as
polynomial patches is discussed. In the third section, surface curvature computation is reviewed
and a method for computing curvature-based features reliably is advanced. In the fourth section,
the properties of the bi-quadratic function and how they may be applied to cylinder estimation
are discussed.

Effort has been made to discuss the mathematics and algorithms as they relate to this work

and computer vision in general and not in the abstract.

4.1 Review of Coefficient/Parameter Estimation

Since coefficient/parameter estimation underlies all of the work here discussed, we shall
begin with an overview of the principles, assumptions and techniques of linear and non-linear
parameter estimation.

Fitting, in general, is the modcling of data with some overarching mathematical description.

This is done by assigning to the fitting mathematical description or function an appropriate set of

58



59

parameters. In this work, a surface description is desired for a set of range measurements which

yield three dimensional points:
(J:iay{vzi) (OSl < "V)

where N is the number of measurements taken.

Fitting can then be defined as follows:

Given a fitting function

Z(Ivy) = f('r’y;al 'Ha;\l)

where M is the number of adjustable parameters of f, compute a set of values for

[A] = (a1 ...aar) such that some likelihood criterion is maximized.

Two constraints need to be satisfied for this operation to make sense. First, the data must be
describable by a bivariate function and second, the fitting function must be capable of describing
the data.

For a set of data to be describable by a bivariate function f(z,y) on an orthogonal x-y basis,
the coordinate patch C on that space must be one-to-one (i.e. there must be only one z; value

for each pair of z; and y;).

4.1.1 The Data

For a C; coordinate patch to be one-to-one, a function x : ® — R3 describing C; for some
k > 1, where R is an open subset of R? with coodinates u! and u? and 2% x 2 #0on R
(131].

A subset R of R? is open if for every point P € R there is an Euclidean e-neighbourhood
around P € R.[131]. In other words, for any point on the surface, there is a disk around the

point which is completely contained in the surface.
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The constraint, therefore, on the data is that the surface be continuous and have non-zero
first partial derivatives (otherwise, the surface is no longer a function on x-y since at points of
zero first partial derivatives, the surface will experience a one-to-many mapping of z, y onto ).
Such surfaces or patches are called Monge patches.

Laser range data are constrained by the sensing physics to be a one-t0-one mapping between
the array indices and range readings (i.e. each location in the sensed image can have one and
only one range value). The problem occurs in such images at edge and occlusion discontinuities
where the first derivative approaches infinity. If step edge changes occur in a region being fitted,
the fit would be poor and the disparity between the data and the fitted surface would be large.
If, however, the entire range image is first segmented to obtain separate smooth regions, each of

these regions would be a Monge patch.

4.1.2 The Fitting Function

A fitting function must be capable of describing the surface for a reasonable fit to take place.
For example, if the planar function z = a + bz + cy were to be fitted over a large portion of
data representing a cylindrical surface, the fit would invariable be subject 1o large fitting errors
because there is no combination of parameter values (a, b, ¢) which can bend the function into
the required surface.

In general, there are two kinds of surface functions which can be fitted to the data. First, the
function may describe precisely the form of the data being fitted. Fitting a function describing
a cylinder to data of a sensed cylinder, a spherical function to data describing a sphere or a
planar surface function to data of a planar surface fall into this first category. Second, a general
function may be used to fit the data. The purpose of such fitting is often to represent the surface
for reconstruction and display. The bivariate polynomial surface function is an example of such

a function. For any arbitrarily complex surface (many smooth bends), an arbitrarily high-ordered
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polynomial can be selected to fit the surface.

Unfortunately, for most interesting structural forms like cylinders and cones, the constructing
functions are non-linear in terms of their ori;nting parameters. This poses a problem since
it is more convenient to fit linear functions. As will be explained later many problems are
attehdam to non-linear fitting. Unless the original surface were linear (as with planes), therefore,

approximating functions are generally used for such fitting.

4.1.3 Fitting as a Minimization Process

The task of fitting a function to a set of data points may be framed as one of maximizing
some goodness-of-fit metric if a closed-form description of such a metric exists. The maximizing
of this metric would constitute the minimizing of fitting errors.

The fitting of a bivariate function
z(z,y) = f(z,y;a1...ap) (4.1)
(M being the number of adjustable parameters of f) to a set of data
i € Z ! 1 S t S N
where N is the number of sample points may be stated as follows:
N
maximize over aj...aa : ZG(zi,zi, ¥i) (4.2)
=1

(where G is the goodness-of-fit metric of f(z:, yi) to z).

If we assume that the sampling and quantization errors in the data are independendy and
normally distributed with a standard deviation ¢; and zero mean, the probability of error at each |
point is the Gaussian probability:

__1(2,'—/(1,.51.'2)2
P,=Aze ? %

where Az is the mean interval between z readings.
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Owing to the independence assumption the probability of the data set is the product of the

probabilities of the points:

Lazflzevdye
} (4.4)

P H{Aze 2 %

i=1

The maximization of equation 4.4 may be obtained by minimizing the logarithm of its recip-

rocal:

. 2 -
[E (z; = f(zi,4)) ] _ NlogAz (4.5)

20,2

Since Nand Az are constants, if the standard deviation ¢; is also constant for all :, this is

equivalent to minimizing

(2 = f(zi,9:))? (4.6)

This is the familiar least-squares fitting criterion.
If, however, the standard deviation o; varies across the range image, the minimization of

equation 4.4 is equivalent to reducing the x? function given by:

4.1.4 Review of Linear Coefficient/Parameter Estimation

The linear function to be fit to the data may be written:

M
22,9) = 3 arXalz,y) (4.8)

where X,(z,y), Xa2(z,y), - - Xm(z,y) are the basis functions

ay,do, - ap are the function parameters

or

z=2a-X (4.9)
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Equation 4.7 then becomes:

N M 2
i — ke Ak Xk(Ti, Y
: ai
=1
For convenience in the ensuing discussion, we define two matrices A and b such that
A = X;(zi,yi)
b, = =
a;

A is known as the design matrix.

Solution by Normal Equations

The x? expression of equation 4.10 is at its minimum value when its first derivatives with

respect to all ay,az,...ap are zero. The minimization of 2 thus becomes the solution of:

N 1 M
ZF z,'—-ZanJ(zg,y,-) ‘Yk(r,‘,y() k= 1,'2,...11[ (4‘11)
i=1 ¢t j=1
This yields:
N M I[N
2 X (zi, ¥i) X;(zi, y) Xe(Ti 3:) . . .
2—72—-— = { 2 o2 a; k=12,...M (4.12)
i=1 ' j=1 Li=1 '
Let
y Xj(l':‘,yi)Xk(Ii,yi)
akj = Z 0.2 (413)
=1 '
N
i Xk (24, ¥
=1 ¢

By inspection, [a] = AT - A and [3] = AT - b. Equation 4.12 can now be rewritten as:

M
Y okje; =0 k=1,2,...M (4.15)
J=1

or in matrix notation:

] -a

(5]

AT . A.a = AT.p (4.16)



Possible Configurations in which
the same plane may nest in different
bicubic fits.

Figure 4.1: Multiple portions of a bicubic surface may fit the same plane.

Equation 4.12 and cquétion 4.15 are knbwn as normal equations. The solution of these
equations for a will yield the x? minimized result. Such minimization may be accomplished by
the standard linear algebra techniques of LU-decomposition with backsubstitution or by Gauss-
Jordan elimination or by QR minimization of the design matrix. As discussed in [140], the latter
method is preferable because direct solution of the normal equations by the first two methods is

susceptible to round off errors.

Solution by Singular Value Decomposition

A serious problem dogs the normal equations methods of x? minimization. When the normal
equations are singular or close to singular, the technique will fail. Should the equations be

singular, one of the pivots in the solution matrix becomes zero and all the linear equation
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solution algorithms mentioned previously will fail. When one of the pivots becomes very small,
the typical result is that the linear solution becomes unstable, yielding very large parameters which
cancel each other out when the resulting function is evaluated. While such a singular solution
is not normally expected in grossly overdetermined (much more data than unknown variables)
fitting problems, they can occur in surface fitting when more than one set of parameters can fit
the data. For example, if a bicubic surface function were fitted to small patch of data which
represents a plane, it could occur that multiple combinations of coefficients will fit the data.
Since bicubic surfaces are capable of producing ‘S-shaped’ sections, one can see intuitively that
there are multiple portions of the ‘S’ which might fit the data (see figure 4.1). This results in an
ambiguity in the solution. For this reason, singular value decomposition (SVD)[140, 81, 155]
was the algorithm of choice in the work reported here.

The minimization of the y? expression in equation 4.10 can be rewritten as to the minimization
of

!=|A-a-b? (4.17)

In tmdiﬁonal linear algebra, it has been shown [140, 81, 155] that any M x ¥V matrix A can

be decomposed as follows:

A=U.w.VT (4.18)

where U and V are orthogonal matrices (ie. U - UT =TI and V .- VT =1, I being the identity
matrix). Uis an M x N matrix and the dimension of V is N x N. The matrix wisan ¥V x ¥
diagonal matrix with non negative diagonal elements.

Since U and V are orthogonal, U=! = UT and V-! = VT, If M = N, it follows then that
the inverse of A is given by:

ATl=V. [diag-#] U7 . (4.19)

11

At this point, the algorithm applies a very important relaxation. The chief question to be

answered is whether b lies in the range of A..If it does, a solution exists for a. While it seems
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counter-intuitive, Golub et. al. [81] showed that the solution is attainable by simply replacing all
occurrences of ;L with zero in the new diagonal matrix whenever w;; in w is zero. The reason
for this is that within the null space, any corresponding column of V can be added to a in any

combination. The SVD solution then becomes:
a=V.-w-(U-b) (4.20)

where w is the modified [diag;-].

‘V.w .U’ is known as the pseudoinverse of A and Golub et. al. showed that this solution
works‘ for overspecified systems where (N > M) as well.

The algorithm used in this work is a modified form of the routines due to the Numerical
Recipes Library by Press et. al[140]. In the experimentations, it was found that the ¢ threshold
of w;; at which to set the inverse to zero is critical in the fitting. For single precision, the value
given in the library is 10™° and this seems to work well. At double precision, this threshold
should be 10~% to 10~!2. Within the range of acceptable values for the double precision fit,
there is little deviance in the result, but there seems to be a threshold (approximately 10~°) at

which the fit becomes unstable.

4.1.5 Review of Non-Linear Coefficient/Parameter Estimation

Non-linear parameter estimation involves the fitting of a set of data to a function which varies

nonlinearly with respect to the parameters being estimated.

Consider the x? function x?(a), where a is a multivariate coordinate system in M dimensions

(M being the number of parameters being estimated). By Maclaurin series, this is:

622

2
) = ao>+za o+ 135" 2

_bl

(ao)agaj +---

= 7-—d-a+%a-D-a @4.21)
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where ag is the origin of the coordinate system a
¥ = x*(20)

d is the dimension M gradient vector: d = —Vx?(a)

D is the M x M Hessian matrix: D;; = a‘zza: (20)

Therefore, the gradient of the y? function may be approximated by:
Vx=D.a-d (4.22)
Hence, the extremum of the x? function occurs when
D an, =d _ (4.23)
and, at some approximation point agpproxs
D - aupprox = VX2 (2approx) +d | (4.24)
By subtracting equation 4.24 from equation 4.23 and algebraic manipulation, we have:
D - (amin — Agpprox) = =V xX*(2approx ) (4.25)

or

min = Agpprox + D71 - (= VX* (aapprox )] (4.26)
Thus, it is possible to jump direcly from some approximation point to the x? minimum point if
equation 4.21 is a good approximation and the inverse of the Hessian matrix is known.
From section 4.1.3, we have the expression for x? (equation 4.7) as:

Cay=3 (Zi - f(;i»yi:3)>2

=1

where N is the number of points (z;,y;, z;) in the data set. The gradient V f is thus:

o2 zi — f(rny., ) 0f(zi yiia) _ .
ar = 2; o~ Fer k=1,2,....M (4.27)

where M is the number of parameters being estimated.



68

The elements of the Hessian matrix Dy, are given by:

‘V . .. . .o . g
9%y —2%° 1 [0f(zi,y:12) 0f(zi, i:2) -[z,»—f(z,-,yi;a)]azf(z"y"a) (4.28)

Bakaa, -1-7-;_5 Bak (90.1 3akaa1

=1

Equation 4.25 may thus be written as the set of linear equations:

M
Y akibar = Bi k=1,2,.... M (4.29)
=1
where
19x? 1 9%x?
= = — d = ——
2 Bak an ¢ 2 é)ak(')al

[a] is usually called the curvature matrix in the literature.

For each set of parameter approximatiohs Agpprox» €quations 4.29 may be solved for the
increments & to be added t0 asppr0x 0 Obtain a better ‘approximation.

Should the iterative solution of equations 4.29 not converge, an altemative solution is the
steepest descent method which adds a small constant fraction of the the local downhill gradient

(negation of the gradient vector):
Anext = Acwren — CONStant X Vx2(dcurrens ) (4.30)

or
da; = constant x [ k=1,2,....M (4.31)

The Levenberg Marquardt method applies both the Hessian matrix solution of equation 4.29
and the steepest descent solution of equation 4.31 for non-linear parameter estimation. The
steepest descent method operates when the approximation is far from the solution and the Hessian
matrix method is activated when the approximation is close to the solution. The Levenberg-

Marquardt algorithm in [140] is used in this work.

4.2 Contiguity-based Segmentation

At this juncture, it is fitting that we discuss the variable-order segmentation work of Besl and

Jain[22, 25, 26]. The variable-order algorithm and programs were used in this work to perform
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the initial segmentation of the range imagery.

4.2.1 The Algorithm

The variable-order segmentation strategy is based on the idea of spatial coherence or surface
coherence. The basic idea is that surfaces that are contiguous (i.e. no step jumps or discon-
tinuities) can be approximated by bivariate polynomials. If a sensed scene is made up of a
set of such piecewise smooth patches, then an appropriate segmentation scheme should yield a
corresponding set of polynomial surfaces.. The Besl-Jain algorithm does this in a region growing
and surface-order varying process.

In overview, the algorithm proceeds as follows:

1. Select a set of small seed regions R,..4 at which there is a high degree of confidence that

they are portions of contiguous surfaces.
2. Rank these seed regions by order of confidence
3. For each region r; in R,..q, do the following:

(a) Fit a polynomial surface function S; (where i the polynomial order is initially 1 and
S; is planar).

(b) If the goodness-of-fit threshold is not exceeded for the S; fit, grow the region and
perform the §; fit again.

(c) If the goodness-of-fit threshold is exceeded, increment i (i.e. S; progresses from
planar to biquadratic to bicubic to biquartic).

(d) If i is greater than a set order limit (e.g. ¢ > 4 or &; is greater than biquartic), procccd-
to the next seed region (i.e. go to step 3g)

(e) If there has been no improvement in the goodness-of-fit for two successive surface

orders, go to step 3g.
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(f) Go to step 3a.

(g) If the goodness-of-fit of resulting grown region is within the acceptance threshold,
the region is collected into the set of grown surfaces and remove from R,..q those

seed regions which are in the grown region.

Besl/Jain used surfaces computed from differential geometry concepts to obtain the surfaces
in step 1. Using these surface regions as the initial segmentation hypothesis, the regions were
shrunk to obtain seed regions. The rationale for this was that while the initial segmentation was
rather inaccurate, there is good confidence that there is some kernel of truth in the segmentation
— especially in the middle of the segmented regions.

The increasing orders of surface functions being fit could be construed as a partial order in
surface space where a surface of order i will atways yield a better or equal goodness-of-fit to a
coordinate patch r than a surface of k if i > k. If two successive orders i and i + 1 yield the
same goodness-of-fit, then the all fits of order k > 1 will yield the same goodness-of-fit. This ié
obviously true for increasing orders of polynomials in fitting of data in two dimensions z and y.

By extension, it is also true for bivariate polynomial functions fitting three dimensional data.

4,2.2 Comments on the Variable-Order Segmentation Algorithm

The variable-order region growing strategy has been shown to work impressively on a wide
variety of data [22, 25, 26] because its underlying assumption of spatial coherence is very general.

As will be discussed later, the computation of surface curvature descriptors using digital
kemel-type panial differentiation of the image is unstable. The algorithm often generated a very
fragmented initial segmentation. Since the purpose of this segmentation is only to provide a first
guess for variable-order fitting and region growing, the only criterion for this initial segmentation
is that it yields hypotheses of contiguous (spatially coherent) regions. A simple smoothing filter

which rejects regions of data discontinuity like the morphological spherical filter(70] could be
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. Ringing in a high order polynomial fit
to a plane (effect exaggerated for illustration)

Figure 4.2: Ringing occurs when one fits a higher order function to the data than is necessary.

used to provide more stable initial seed regions. A similar algorithm using variable scale edge
detectors is described in [123].

Experiments performed with this algorithm on laser data showed that the variable-order
segmentation often (for most regions) bottomed out at the order limit. It fitted the highest
allowable order surface (biquartic in the program used) even if the original data was planar. The
reason for this is that the higher order surfaces are more compliant to sampling measurement
noise, often yielding better goodness-of-fit measures than lower order surfaces. This said, one
may be tempted to skip variable order fitting and simply fit high order surfaces to the data from
the very beginning. Such an exercise, however, is susceptible to the common illness which
infects splining operations. A surface order thai is too high suffers from the problem of ‘ringing’
(see figure 4.2). Variable order fitting will reject higher order fits in which ringing occurs because
it terminates when an error threshold is satisfied. This accepts the lowest order fit which fits the
data before severe ringing can begin.

The surfaces generated by the algorithm are smooth regions which are described by a surface

order and a set of coefficients to the bivariate polynomial function. While this provides a good
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description of the scene in that one can reconstruct the scene quite accurately by simply applying
the bivariate polynomials to each point in the regions, it does not readily lend itself to semantic

interpretation of the surfaces.

4.3 Curvature Analysis and Structural Hypothesis

Sign maps of the Gaussian and mean curvatures of a surface provide a means of describing
the surface in symbolic terms of semantic significance. These curvatures are treated in the field
of classical and modern differential geometry [125, 131]. Besl and Jain discusses the prol-nerties
of these surface metrics in great detail in [19, 20, 21, 23, 24, 25, 26] and the application of the
sign maps of these surface curvatures to object recognition is a major portion of Paul Besl’s
doctoral dissertation{22]. In our discussion, we shall begin with a review of the mathematics
and proceed to treat the extension of Besl’s work to yield stable features whose computation is

robust.

4.3.1 Differential Geometry Review

In classical differential geometry, the shape of a surface is uniquely determined by the first
and second fundamental forms of the surface, I and II respectively.
As in the previous discussion on surface fitting, the space in which the curvature measures

are computed takes the form of C? continuous (twice differentiable) Monge patches.

z= f(r,y)

Applying the parameterization: v = z, v = y such that w = g(u,v), the surface may be
rewritten as the vector:

w=[y v g(u,v) ] (4.32)
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The First Fundamental Form

The first fundamental form of the surface w is given by:

I = dw.dw
= (wydu + w,dv) - (Wydu + wydv)
= (W, - W,)du?® + 2(w, - w,)dudv + (W, -w,)dv?

= Edu®+ Fdv?+ G dv? (4.33)

where

E=wu'wu;F=wu'wu;G=wv'wu

The subscripts denote partial differentiation such that

w oo W
YT 0w YT Ov
w, and w, are tangent vectors to the surface at point (u,v,g(u,v)) and form the basis of the

tangent plane T'(u,v) of the surface at that point.

Alternatively, the first fundamental form may be written in matrix form as:

qu g du
I(u,v,du,dv) = [dudv) noo

g21 922 dv
du’ [g)du (4.34)

where g1y = E =Wy - Wy, g12 = g1 = F = Wy - W, and g2 = G = W, - W,

The symmetric matrix [g] is known as the metric coefficients, the coefficients of the metric
tensor, the coefficients of the Riemannian metric or simply the metric tensor or metric of the
surface. It should be noted that the E, F and G, and thus the first fundamental form, are defined
only in term of w and its first derivatives. I is therefore an intrinsic property of the surface. It

measures the variation of the surface w at point (u,v) on the Monge basis as a result of some
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movement (du,dv) at that point. Some useful properties related to this metric are:

g = gl = [wu x w,|?

11 _ 922 12 21 g12 22 911
gl==:g¢"=g"=~-=—=;¢"==—
g g g

where g*' is the (k,!) entry of the inverse matrix of (g;;)

4.35)
The Second Fundamental Form
The second fundamental form of a surface w is given by:
I = —dw-dN
= w, N.du? - (Wy - N, +w, - Nu)dudv —w, - N,dv?
= Ldu®+2Mdudv+ Ndv? (4.36)
where
_ 1 -, _
L=-w, -N,; M= —E(wu‘ﬁv+wu~Nu); N =-w,-N,
N being the unit normal of the surface given by:
. wxN
N= 4.37
lw x Nj (4.37)

with differential dN = N,du + N,dv.

Since the tangent vectors w, and w, are perpendicular to the normal N for all (u,v),

0=(Wu-ﬂ)uzwuu-ﬁ+wu-ﬁu
0=(wu'ﬁ)v=wuu'ﬁ+wu'ﬁu
0=(w, -N),=w, -N+w, N,

0=(wv-ﬁ)v=ww-ﬁ+wu-ﬂv
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where the double subscripts denote second partial derivatives with respect to the variables indi-

cated by the subscripts, such that

0*w a*w
w = ’
uu au2 t v av'z
0*w
A4 =W = ——
w YT Qudv
Thus
Wyy N = —w,-N,
Wy, N = -w, N, = -w, Ny
wuv'N = —W, Nu

L, M and N of the second fundamental form can therefore be written as
L=wy -N: M=w, -N; N=w, N (4.38)

Alternatively, the second fundamental form may be written in matrix form as:

bui b2 du
I(u,v,du,dv) = [dudv]
b21 b22 dv

= du’ [bjdu (4.39)

where by; = L = Wyy - N, bia = byy = M =W, -Nand by = N = w,, - N.

The symmetric matrix [b] is known as the second fundamental form matrix. It should be
noted that L, M and N, and thus the second fundamental form, are defined not only in terms
of w and its partial derivatives, but also the pointwise surface normal N. II is therefore said to
be an extrinsic property of the surface. It measures the correlation between the variation of the
normal vector N and the variation in surface w at point (u, v) on the Monge basis as a result of

some movement (du, dv) at that point.
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The Wiengarten Map

An altemative way to view the first and second fundamental forms is by means of the

Wiengarten map L which is defined as follows:

The Wiengarten map L is, for each point P € w, the function L : T,w — R? given

by L(w) = —w - N where T,w is the tangent space of the surface w at point P.[131]

This is a linear mapping of vectors in the tangent plane to other vectors in the tangent plane
and describes the directional derivative of the normal vector to the surface. L can be defined in

terms of the matrices of the first and second fundamental forms by:
£y =3 big¥ or L = [g71][b] (4.40)

where L7} is the (4, k) element of the Wiengarten map L.
The E, F,G, L, M, N notation of the first and second fundamental forms are more suited for

some purposes, while for others, it is more convenient to use the Wiengarten map as an operator.

4,3.2 Differential Geometry-Based Surface Properties

A number of important surface properties can be computed from the first and second funda-

mental forms and the Wiengarten map, I, I and L respectively.

Normal and Principal Curvatures

Let some space curve s lie in the surface w defined on the Monge space (u,v). The normal
curvature vector k,, of s at point P = (u,v) is the vector projection of the curvature vector k of

s at that point onto the normal N of w. i.e.

]

k., = (k-N)N

= kN (4.41)
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where
kn =k-N ‘ (4.42)
is known as the normal curvature.
Parameterizing the curve in t such that the sur-

face along s is given by w = [ y(t) o(t) g(u(t),v(t)) ], the unit tangent vector t of s is

given by t = 9% = £¥/|€¥| and the curvature vector k at P is given by k = £ = /4

Applying the fact that k and N are perpendicular by definition, equation 4.42 expands to:
_ (wu% + wv%) ' (Nu% + Nu%)
du dy du dv
(Wt ) (W + w. )
du? du d dv?
du? u dy dy?
ELQ® yoFdeds 4 GU

(4.43)

-2

It should be observed that by factoring out (‘;—;’) from both the numerator and denominator
of equation 4.43, k, is dependent only on the ratio of %‘f 10 % and not their absolute values.
Hence, one may consider the normal curvature at point P in the direction du : dv, du # 0 and

dv # 0, in terms the first and second fundamental forms:

Ldu? + 2M dudv + N dv?
E du? + 2F dudv + G dv?
II
1

4.44)

The principal curvatures x; and 2 of a surface w are the maximal and minimal nomal
curvatures of the surface corresponding to the principal directions. In terms of the Wiengarten
map L, the principal curvatures are the eigen values of L, the corresponding eigen vectors of
which define the principal directions. The principal curvatures and directions of a surface at
point P can therefore be viewed as the extrema of the Wiengarten map of the surface at Lhatv
point. Solving the system, s, and s, can be expressed in terms of E, F), G,L,M,N as the roots
of:

(EG - FO)k? = (EN + GL - 2FM)x + (LN - M?*) =0 (4.45)
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or
B+ VBT —4AC
k12 = 24

where A = (EG — F?), B = (EN + GL - 2FM) and C = (LN - M?).

The principal directions are defined by the roots of:

(FN — GM\)tan’¢ + (EN — GL)tang + (EM - FL) =0

or
1 [-BxVvVB?-44C
$1,2 = tan 2

where A = (FN = GM); B=(EN -GL)and C = (EM - FL).

(4.46)

(4.47)

(4.48)

Since the principal curvatures of a surface at a point are the maximal and minimal normal

curvatures of the surface at that point, principal curvatures and directions are suitable for appli-

cation to the generation of hypotheses for cylinder parameter estimation. This will be considered

later in our discussion of the axis of sweep of cylinders.

Gaussian and Mean Curvatures
The Gaussian curvature K and the mean curvature H of a surface
W= [u v g(u,v) ]

are defined as follows:

The Gaussian curvature of w at point P is the determinant of the Wiengarten map |L|

at that point. The mean curvature of w at point P is half the trace of the Wiengarten

map £ trace (L) at that point.
Thus,

K = [L| = det(@g")b])
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det[g™!] det[b]

(4.49)
H = % trace [g™!][b]

(4.50)

In the E, F,G, L, M, N notations of the first and second fundamental form, these become:

. _ LM -’
K = Tr—F @51
EN + GL—2FM
= 4.
d AEG - F7) (#:52

Applying equation 4.34, equation 4.39, and the relations given in equation 4.35 10

equation 4.49 and equation 4.50 respectively, and solving for in terms of g(u,v) (where

w=[y v 9(u, ) D, we have

2
Guuvy — g
K = —=3u 4.53
(1+627 627 @33
2 2
uu v vy u "2uuuu
I Juu(l +93) + guu(l + 95) — 29ugvg (4.54)

2(VITGT+ L)

where the subscripts of g denote partial differentiation. For example,

(Bg(u, v))

1
Juo = 520 ou

av

These curvatures possess the following properties:

o The Gaussian and mean curvatures are invariant with respect to viewing perspective (ro-

tation, translation and scale) and depend solely on the shape of the surface.

e The Gaussian curvature K at a point on the Monge basis (z,y) is an intrinsic property of
the surface at that point. This means that it is determined only by the local variations of the
surface and not by how that surface is embedded in a higher dimensional space. One may

think of this as the microbe-eye-view of the surface. If a microbe sits at a point (z,y, z) of
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K>0K=0| K<0

A <0 peak ridge saddle

ridge

H=0{ none plane | minimal

surface

H>0 pit valley | saddle

valley

Table 4.1: Surface interpretation of Gaussian curvature (/) and mean curvature (H) signs

the surface and views its surroundings, taking measurements of the surface around itself,
the results it obtains are completely intrinsic to the surface at that point. If the entire
surface were bent in some form (but not stretched or creased to form a discontinuity in
the surface), the local readings taken by the microbe would remain stable. Under such a
bending of the surface, the mean curvature would change, making it an extrinsic surface

property.
o The Gaussian and mean curvatures are related to the principal curvatures %, k; as follows:

q = (k1 + ko)

K= K1K2
2

or

K1’2=HiVH2—K

o Surfaces may be typed by observing the signs of the Gaussian and mean curvatures as’

shown in table 4.1.

The properties of these curvatures and the ease with which they yield surface typing make

them a desirable metric for the computation of features for matching. The invariance of the
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Figure 4.3: The eight surfaces types described by the curvature sign map

curvature sign map to perspective transformation permits one to perform matching of model
region adjacency graphs to the regions in the curvature sign map. That these curvatures are local
to surface regions make them stable under occlusion. The visible shapes of these features are

shown in figure 4.3.

Surface Area

The surface area of the patch w can be computed from the first fundamental form. The
square root of the determinant of the metric tensor (g = |g|) summed over the patch yields the

surface area as follows:

Vi = VEG-F? = \/1+¢.% + 9.2

Surface Area = / V9 dudv (4.55)

4.3.3 Problems with Digital Computation of Curvature Sign Maps

In practice, however, serious problems exist in the computation of features derived from

curvature sign maps. These problems which are discussed in [25] caused Besl to abandon the
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use of these features per se for symbolic feature matching purposes. In his work, he reduced
the importance of these features and used them to generate seed regions which are then grown
in the variable order segmentation strategy discussed earlier. These problems are by and large
associated with the computation of the curvatures from digital data.

The usual methods for computing surface curvatures in a digital image are the digital kemnel-
type computation of derivatives employed by Besl in his work and the facet model approach of
Haralick et. al. [87].

Besl utilized kemel operators comprising the following:
fu=D,xSxf fo=Dy*xSx*f

fuuzDuu*S*f fuszuu*S*f

fuv=Duv*5*f

where

* denotes convolution

S is the binomial smoothing window

D- are the weighted least squares derivative estimation windows
f is the bivariate function describing image

The binomial smoothing window S is given by S = 5§37, where

L1 o
8—64[1 6 15 20 15 6 1]

The weighted least squares derivative estimation windows are given by:

- =T - =T
Du =d0d1 Dv=d1
-~ =T - =T
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N.B. See figure 8.7 for the key to the surface type labels.

Figure 4.4: The curvature sign map computed by the application of kemel-type convolution
operators

For a 7 x 7 window (as used by Besl), the column vectors d:,, d-; and d; are given by:

- 1
b = z{111111 117

F 1 T
d = 28[—2 -3 -1 01 2 3]

- 1
dy = — - - - T
2 84[5 0 -3 -4 -3 0 5]

An extensive set of such window operators is detailed in {17].
Derivatives generated by convolving these operators with the digital image tum out to be
extremely noisy. This is due mainly to digital quantization noise and measurement error. Fig-

ure 4.4 shows the Gaussian and mean curvature sign map computed on a 200 x 200 range image
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of a model of the space shuttle using the kemnel convolution operators. Notice how the surface
. regions are fragmented and bear little resemblance to the surface description expected.

Haralick et. al. [86, 87, 88, 124] computed principal curvature-based features in intensity
using the facet model approach. A linear surface model such as a bicubic surface is applied
to the image. Each K x K neighbourhood around a point (z,y) in the image is fitted to the
facet surface model to obtain the coefficients of the surface fit at that point. If a goodness of fit
threshold is exceeded, the point is discarded as the location of surface discontinuity; otherwise,
the coefficients are used to compute the curvature values analytically. Haralick et. al. reported
reasonable success in computing features in intensity images. The features ‘peak, pit, ridge,
ravine, saddle, flat and hillside’ were computed from the zero-crossover maps of the principal
curvatures and these corresponded with the highlighting of edges in the images etc. In the course
of this dissertation, the facet model algorithm was replicated and run on range imagery. The
resulting feature maps were no better than figure 4.4. Unless the kemels are made so large as to
make it encompass more than one contiguous surface most of the time, the digital sampling and
measurement noise render the local facet fit meaningless. The reason the facet model (and the
kemel-type convolution computations) work better on intensity images is that intensity image
sensors such as phosphor-based and CCD cameras are subject to a certain amount of image
blooming and cross-pixel diffusion. This implicitly smooths the image sufficiently to make
the local fits and digitally computed partial derivatives meaningful. Such smoothing is not as

dominant in laser range imagery.

4.3.4 Analytical Curvature Computation from Fitted High Order Surfaces

Until the technology for laser range sensors with sufficient range resolution is available,
techniques have to be developed for the computation of surface partial derivatives if these math-

ematically appealing curvature features are to be used. A solution to the problem of quantization

2\
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noise may be to smooth the images before they are subjected to either kernel convolution or facet
model computations. The problem with this approach is that smoothing alters the structure (and
curvature) of the image surfaces (even if adaptive filters are used to avoid inadvertent merging
of discontinuous surfaces).

A solution developed in the course of this dissertation is to exploit the segmented contiguous
surfaces to which high order polynomials have been fitted. These yield a closed form mathe-
matical description of the surfaces. Assuming that a surface order has been selected to represent
accurately the surface, surface curvatures can be computed for each point (z,y) in the surface

analytically. This process has the following advantages:

o Since the high order surface is fitted to an entire smooth region, the surface description at
each point on the surface is based upon a greater amount of data than the points in a local

window.

o The curvature computation is valid to the degree that the polynomial surface is faithful to

the data.

o Since the contiguous surface is computed by adaptive region growing, it actually creeps
close to the edge discontinuities without crossing them, permitting curvature computations

close to discontinuities in the images.

o The high order surface fit can be thought of as an adaptive filter which smooths the
image yielding an analytically continuous surface. It is possible to extrapolate points

infinitesimally close to each other in full floating-point glory.

o Assuming that the high order fit is accurate, the smoothing implicit to fitting does not '

deform the image surfaces significantly.

Figure 4.5 is the Gaussian and mean curvature sign map for the same shuttle image as

figure 4.4 computed from the high order surface fits on the contiguous surface regiohs. Notice



86

N.B. See figure 8.7 for the key to the surface type labels.

Figure 4.5: The curvature sign map computed analytically from the high order surface fits

nn

Ll
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how the features computed correspond to intuitive expectations. The wings and tail are planes,
valleys fill the gap between the wing and the fuselage and the fuselage and shuttle engines are

ridge regions.

4.4 The Properties of Biquadratics applied to Cylinder Estimation
The bi-variate function describing a three-dimensional biquadratic surface is given by:
z=a+bz +cy+dzy+ex’ + fy’ (4.56)

It would be beneficial to discuss the motivation of using this function and to have a intuitive
grasp of how this equation can represent cylindrical forms before taking a plunge into derivations

and proofs.
First of all, one may make observations concemning the second partial derivatives of the

biquadratic form with respect to z and y.

62
_amj = ¢ (4.57)
02z
% = f (4.58)

These equations yield the partial acceleration vector [112] which describes the direction of max-

imal acceleration. This indicates that there would be a constant direction of maximal acceleration

that is homogeneous throughout the entire surface. This means that if a biquadratic surface is

fitted to a cylindrical surface (either convex or concave), the orientation of the cylinder axis pro-

jection onto the x-y plane can be computed. This projection is perpendicular to the acceleration

vector. It will be shown later that the gradient of the cylinder axis is the arctangent of the root of

the quotient of e and f, but the present discussion serves to indicate the promise of biquadratics '
. in fitting cylinders and cones (which also have constant directions of maximal acceleration).

Second, the two-dimensional function

0=a+bz+cy+dry+ezx’+ fy? (4.59)
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describes the ellipse, parabola, hyperbola (or a limiting form of one of these [115, 166] as will be
shown later). These forms correspond to plane sections of a right circular cone, and are Lhefefore
known as conic sections or conics Since for any z = 2’ in equation 4.56, equation 4.59 can be
obtained with a’ = a + 2/, all horizontal cross-sections of biquadratic surfaces are conics.
Finally, a fundamental property of biquadratics is that it is a symmetric function. It will
be shown that with an appropriate rotation of coordinate axes, the cross-variable term ry can
be climinated. This holds the promise that all smooth symmetric surfaces can be described to

- differing degrees of accuracy by biquadratics.

4.4.1 Properties of Biquadratics - A Review.

The bulk of the properties of the three-dimensional biquadratic equation 4.56 can be observed
in its limiting two-dimensional form (with z = 0) in equation 4.59. The present discussion
will therefore begin with a examination of the latter equation. We shall proceed to discuss the
three-dimensional form and finally, we shall form an association between the biquadratic function

with the surface classes obtained from Gaussian and mean curvature sign maps.

4.4.2 The Limiting Two-Dimensional Function

We shall begin our analysis of equation 4.59 by showing that with an appropriate rotation of
the z and y coordinate axes, the zy term can be eliminated, leaving us with a function which
is completely separable in z and y. This will aid us in our second exercise in which we shall

make some geometric sense of function.

Rotation of coordinate axes

Equation 4.59 can be simplified to yield

A+ Bu+Cv+ Eu?+ Fvl=0 (4.60)
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(with no uv term) by a rotation of axes[115, 166].

Rotating the x-y axes by @ with the formulae

T = ucosf — vsind

y = usind + vcosd

equation 4.59 becomes:

a + u(bcosf + csind) + v(ccosd — bsind) +
u?(ecos?d + fsin?6 + dsinfcosd) +
v?(esin? + fcos®d — dsinfcosf) +

uv (d(cos20 ~ sin?@) + 2sinfcosé( f — e)) =0

4.61)

(4.62)

By application of trigonometric identities, the coefficient of the uv term of equation 4.62

d(cos?8 — sin8) + 2sinfcosd( f — e)

reduces to

dcos2§ — (e — f)sin26

The coefficient of the uv term becomes zero when

dcos2§ = (e — f)sin20

d
tan2 = ;i
Let =tan~! () -3<0<}
20 = ... -2n,8 -7, 0,0 +7,0 +2x...
= @ +nr (n=...-1,0,1,2,..)
9’
g = ZE - -1,0,1,2,..))

2

(4.63)

(4.64)
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Equation 4.64 is periodic on %. This result is significant, because, as will be evident later,
6 defines the principal axes of the conic described by equation 4.59 and its three-dimensional

counterpart, What has been shown thus far is that:
For every two-dimensional quadratic equation
at+brtcy+dry+ez?+ fyi=0
there exists a rotation of the coordinate system with interval 3 which will eliminate

the cross-variable xzy term.

Geometric Descriptions
We shall now make some observations conceming the simplified equation 4.60
A+ Bu+Cv+ Eul+ Fv? =0

If both £ and F are zero, the function degenerates to a planar equation. This degenerate
case is of no interest to cylindrical/conical hypothesis generation.
Parabolas

When E is zero, equation 4.60 takes the form:
a+br+ey+ fy=0

Performing the translation z = u + A, y = v + k; we get:

(a+bh+ck+ fE?)+bu+ v(c+2fk)+ fv? =0 (4.65)
When k = —2—°f_, the v term drops out and equation 4.65 becomes:
c2
(a+bh—-U)+bu+fv2=0 (4.66)

. . . 2 N
We can now remove the constant terrn with the substitution A = i- (j—f - a) and obtain the form:

fol+bu=0 O (4.67)
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If both B and E are zero in equation 4.60, equation 4.66 becomes:
(a - —Ci) +fr*=0
4f N

or

If }(a - j—j.) is positive, the function describes two lines parallel to the u-axis; if it is zero, the
locus of the function lies along the u-axis; if it is negative, the locus of the function is imaginary.
Similarly when F is zero, equation 4.60 can be simplified by translations of z = u + h,

y = v+ k; where

1o yield:

eul +cv =10 (4.68)

The same analysis applied to B and E being zero also applies to C' and F' being zero. Both
equation 4.67 and equation 4.68 are parabolas. It should be observed that the translations per-
formed shift the coordinate axes to the axes of symmetry of the function and that the coefficients
of the second order terms remain the same.

That the parabola is a conic section can be seen in the following analysis[166]. Let OAB be
a vertical cross-section of a right-circular cone (figure 4.6). A plane perpendicular to OAB and
parallel to O A will intersect the cone producing the section CN D. Let the locus of intersection
between the two planes be M N as shown in the figure. Let a horizontal plane pass through the
cone forming the circular section F PG (where P is a point of intersection between the plane
and CN D). This plane intersects with planes O AB and CND at point Q. Let a horizontal |
plane passing through point ¥V intersect the cone producing the circular section of diameter H.N.
Now, PQ lies on CN D and is perpendicular to N M. Assigning a coordinate plane with V as

the origin and N M as the z-axis, we have ¢ = NQ and y = QP. Since N M is parallel to
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Figure 4.6: The parabola as a conic section
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OA4, %—g— = %f-\i, yielding
N
QG = g—Hz (4.69)

Since Q P is perpendicular to FG, and FG is the diameter of FPG (see inset of figure 4.6),

v =|QP’=FQ QG (4.70)
Since HNQF forms a parallelogram, and |FQ| = |QP|, |[HN| = |QP|. Hence, equation
4.69 and equation 4.70 yield:
HN?
2 _ -
v =5F° (4.71)

Since HN and OH are constants for any sectioning plane parallel to OA, equation 4.71 is
similar in form to equation 4.67 and equation 4.68.
Ellipses

When E and F in equation 4.60 have the same sign, applying the translations z = u + h,

y = v+ k; we get

(a+ bh + ck + eh? + fK*) + u(b + 2eh) + v(c + 2fk) + ev? + fv? =0 (4.72)
When h = —-il-’; and k£ = —Qif-. the u and v terms drop out and equation 4,72 becomes:
2 2
(a—%—i—f)+eu2+fv2 = 0
K+eu+ fv2 = 0 4.73)

If K has the same sign as E and F, the function describes an ellipse; if K is zero, the function
degenerates into a single point and if K differs in sign from E and F', the locus of the function
is imaginary.

That the ellipse is a conic section can be seen in the following analysis[166], Let OAB‘
be a vertical cross-section of a right-circular cone (figure 4.7). A plane WXY Z perpendicular
to OAB at an angle from the horizontal intersecting the cone produces a symmetric section,

the axis of which is M N (the locus of intersection). Let C be the midpoint of M N. Passing



Figure 4.7: The ellipse as a conic section
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horizontal planes through €' and any other point Q on M.V, we get two circular sections of
which HK and FG respectively are diameters. The locus of intersection between W XY Z and
the horizontal plane through Q forms the line @ P which is perpendicular to MV and FG. In
circles HRK and FPG, CR and QP are perpendicular to diameters H K and F'G respectively.

Thus,

ICR? = HC.CK

QP FQ-QG (4.74)

Since FQ and HC are parallel, triangles M QF and NCK are similar to triangles M HC and

N QG respectively. Thus,

FQ _ MQ
HC ~— MC
QG QN

= ¥ 4,
CK CN @.75)

Now, CR and M N are perpendicular in plane W XY Z. Taking M N as the z-axis with C as
the origin, the coordinates of point P are z = CQ and y = QP. Thus equations 4.74 and

equations 4.75 yield:

QPP _ FQ-QG
ICRF = HC -CK
2 )
v _ MQ ON - (4.76)

|ICR|? ~ MC CN
Since C N and C R are constants for any sectioning plane WXY Z, welet [CN| = |[MC| = a

and |CR| = b Thus QN = a -z and MQ = a+ z. Equation 4.76 becomes:

¥ _(at+2)(a-12)
b2 a?
yielding:
§+§=1 (4.77)
or

b2z% + a2y’ —a?? =0 ‘ (4.78)
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Figure 4.8: The hyperbola as a conic section

Equation 4.78 is isomorphic with equation 4.73 (£ and F' having the same sign) with a constant
translation.
Hyperbolas

When E and F in equation 4.60 are of different signs, equation 4.73

K+eu?+ fvl=0

describes a hyperbola unless X is zero. If K is zero, the locus equation 4.73 is a pair of lines -
intersecting at the u — v origin.
That the hyperbola is a conic section can be seen in the following analysis{166]. Let OAB

and OST be the vertical cross-sections of right-circular cones as shown in figure 4.8. A plane
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W XY Z perpendicular to O AB (and OST) at an angle from the horizontal intersecting the cones
produces a section on each cone. Let the intersection of the plané W.XY Z and OS5 and OB be
M and N respectively, and let C be the midpoint of }M.V. Passing horizontal planes through C
and any other point Q on M N extended into the lower section, we get two circular sections of
which HK and FG respectively are diameters. The locus of intersection between W.XY Z and
the horizontal plane through Q forms the line Q P which is perpendicular to MV and F G. In

FPG, QP is perpendicular to diameter F'G. Thus,
QP> = FQ - QG (4.79)

Since FQ and K'C are parallel, trangles M FQ and NQG are similar to triangles MKC and

HC N respectively. Thus,

F _ 3q

KC - MC

QG NQ

- = = 4.
HC CcyN (4.80)

Now, CR and M N are perpendicular in plane W.XY Z. Taking M N as the z-axis with C' as
the origin, the coordinates of point P are z = CQ and y = QP. Thus equations 4.79 and

equations 4.80 yield:

MQ NQ@

2 _ g .

ly|* = KC (MC) HC (C’N) (4.81)
Since CN and K C are constants for any sectioning plane WXY Z, welet |[CN| = [MC| = a

and |[KC| - |HC| = b% Thus MQ = a+zand NQ = a— z. Equation 4.81 becomes:
2 _ Y
y' = —=(a+z)(a-2)

yielding:
2?2y .
=-5= 1 (4.82)

or

b?z? — a%y? - a??* =0 (4.83)
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Equation 4.83 is isomorphic with equation 4.73 (E and F having different signs) with a constant

translation.

The Characteristic of the Two-Dimensional Quadratic Form
In the two-dimensional quadratic form, the quantity
d? - def (4.84)

known as the characteristic of the quadratic form is invariant through rotation and translation of
the coordinate axis.

When the function is rotated through angle 4 the first three terms of the rotated form are:

(ecos’d + fsin?6 + dsinfcosd) u? +
(esin?d + fcos?d — dsinfcosf) v? +

(d(cos%’ — sin%) + 2sinfcosd( f — e)) uv
Letting the corresponding coefficients of the rotated equation be d’,¢’, f’ such that

¢ (ecos®d + fsin?8 + dsinfcosd)

f (esin®f + fcos? — dsinfcosh)

d!

(d(cos20 — sin%8) + 2sinfcosd( f — e))

the characteristic of the rotated form
d - 4e'f
becomes:
d*cos*d + d%sin*0 — 8e fsin?dcos?9 — e fsin?9
+ de fcos'd + 2d?%sin?fcos?6

= (d® - 4ef)(cos*d + 2sin?fcos’d + sin*g



d? -4ef <0
d* —4ef =0
d*—def >0

Ellipse
Parabola

Hyperbola

Table 4.2: Summary of a + bz + cy + dzy + ez? + fy? = 0 forms

= (d® — 4ef)(cos?8 + 2sin?8)?

By the application of similar trigonometric manipulation, it can also be shown that with any
translation z = u + h, y = v + k, the characteristic remains constant.

The characteristic of the two-dimensional biquadratic form determines the shape of the curve

as shown in table 4.2.

=d? -def

The Limiting Two-Dimensional Form — A Summary

In summary, it has been shown that

e The equation

a+bz+cy+dry+ex?+ fyP =0

can be reduced by some rotation # of the coordinate axes to yield the form

A+Bu+Cv+ Euv®+ Fvi=0

e fis given by:
¢+ nr

g = 5

(n

where ¢’ = tan~! (£7), and is periodic on .

.= 1,0,1,2,...)
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Eand F Form Degenerate Forms

Either one zero | Parabola E=0& B=0:

pair of lines parallel to u-axis

F=0&C=0

pair of lines parallel to v-axis

The solution may be imaginary

Same Sign Ellipse (K, E different signs)

(Kt, E same sign) [ imaginary locus.

(K =0):
a point
Different Signs | Hyperbola K=0):

pair of lines intersecting

at the u-v origin.

2 2
f:Where K=4-& -%

Table 4.3: Summary of A + Bu + Cv + Eu® + Fv? = 0 forms
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e The equation A+ Bu+ Cv+ Eu?+ Fv? = 0 (and thus the full quadratic form from which
it is derived) always defines a conic section or one of its degenerate forms as shown in

table 4.3
e The characteristic d? — 4e f of the quadratic form is invariant to rotation and translation of
the coordinate axes and describes the shape of the surface as shown in table 4.2.
4.4.3 The Three-Dimensional Biquadratic Function

Oue may think of the three-dimensional biquadratic function (equation 4.56):

z=a+bar-l~cy+d:z:y~}-ea:2+fy2

for any particular z = 2 as the limiting two-dimensional function (equation 4.60) with a trans-

lation along the z-axis of —z2’.

Rotation of Coordinate Axes

By performing the same rotation (equation 4.61) and the same analysis in the previous section,

equation 4.56 becomes:

a + u(bcosé + csinb) + v(ccosd — bsind) +
u?(ecos?8 + fsin®@ + dsinfcosf) +
v2(esin4 + fcos?d — dsinfcosd) +

uv (d(c0520 — sin?8) + 2sinfcosd( f — e)) =z (4.85)

As before, the coefficient of the uv term becomes zero when

d

28 = —-
tan e f

(equation 4.63)

and

¢ + nr

6= (n=..-1012..)
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where 8/ = tan~! (ﬁ-) and is periodic on £ (equation 4.64),

Equation 4.56 therefore reduces by a rotation of axes by angle 4 to:

a + u(bcos@ + csind) + v(ccosd — bsind) +
u*(ecos?d + fsin?8 + dsinfcosd) + v¥(esin?f + fcos?d — dsinbcosh)

=z (4.86)

or

A+ Bu+Cv+ Eu? + Fvl =2 (4.87)
This analysis shows that:

o For every three-dimensional biquadratic equation
a-}-b;f:-+-cy~§-d.z,'y-}-612~}-fy2 =z

there exists a rotation of the coordinate system with interval  which will eliminate the

cross-variable zy term.

e Since the cross-variable zy term can be removed without altering the shape of the surface
described, a biquadratic surface is necessarily a smooth symmetric surface where the axes

of symmetry are perpendicular.

o The axes of symmetry must be straight lines. This is important for the segmentation of
smooth surfaces (like cylinders and cones merging into planes or other cylinders and cones)

into straight conic units.

Geometric Descriptions

The analysis performed on the limiting case where z = 0 applies also for the general bi-

quadratic function for all values z = 2/. The x-y plane may be shifted by letting o’ = a — 2’
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yielding:

a +bz +cey+dry+ex’+ fyt=0

The rotated limiting two-dimensional quadratic function (equation 4.62) becomes:

a' + u(bcosd + csind) + v(ccosh — bsind) +
u?(ecos?8 + fsin?6 + dsindcosd) + v?(esin?d + fcos®d — dsinfcosh)

=0

or

A"+ Bu+Cv+Eu?+ Fvl=0

where A' = A + 2.

In our earlier discussion of the geometric form of the limiting two-dimensional function, we
determined that this function always defines a conic section. Furthermore, we found that the
shape traced by the locus of the function is determined chiefly by the coefficients of the second
degree terms. This means that the summary rendered in table 4.3 applies to the full three-
dimensional biquadratic function. Notice that in the table A affects only the value of X and
thus affects only the degenerate cases. In fact, in three dimensions, it is far easier to understand
such cases. The limiting two-dimensional function wiﬁ z = 0 reduces to imaginary roots when
the surface described by the full three-dimensional form does not intersect the x-y plane. The
locus becomes a single point when the three-dimensional form is a ellipsoid, one tangcht plane
of which is coplanar with the x-y plane. The locus becomes a pair of parallel lines when the
three-dimensional form is a linearly swept parabola and where the sweep axis lies on a plane

parallel to the x-y plane.
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sgn(A’) | 3-D Form | 2-D Form

d* —def <0 + peak/pit ellipse

d> - 4def=0 0 ridge/valley | parabola

d?> —def>0 - saddle hyperbola

Table 4.4: Comparison between two-dimensional quadratic interpretation and three-dimensional
interpretation of Gaussian curvature (K) signs

4.4.4 Comparison with Curvature evaluation

Having seen the properties of the limiting two-dimensional quadratic form and the three-
dimensional biquadratic surface function, we can relate some of these properties to curvature
analysis to derive a more intuitive feel of what the functions are doing, and how they relate to
each other.

The sign of the Gaussian curvature A for a three-dimensional biquadratic surface is constant

throughout the surface. From equation 4.54, we have

K = Guufuvv — ggu
(14493 +93)?

Since the first partial derivatives of the function cannot be imaginary, the the denominator of
the function is always positive. Hence, the sign of Gaussian curvature depends solely on the the

NUMErator g, gy — 92,. This evaluates to:

sgn(def — d?) (4.88)

Equation 4.88 is clearly the negation of the characteristic of the limiting two-dimensional

form in equation 4.84. Table 4.4 cross-references the curvature map table 4.1 and quadratic

characteristic table 4.2.



CHAPTER V

A SPLIT-MERGE STRATEGY FOR STRUCTURAL
COMPONENT EXTRACTION FROM SMOOTH SURFACES

Consider the instance of constructed forms which merge smoothly into other forms in such
a way that there is no local discontinuity anywhere along the seam. Examples of these are
bending pipes elbows, cylinders chamfering into planes, constructed forms meeting in chamfers,
etc. In these cases, local image operators like edge detectors will not separate the components,
and neither will smooth surface finders like the variable order segmentation algorithm described
earlier. There is nothing intrinsic to the data that warrants the segmentation of such merging
forms. The information needed to make such separation lies in the observers ‘understanding’
and expectation of the forms.

Let us assume that a range image has been segmented into smooth surfaces which are
described by bivariate polynomials as described previously. Assume also that a hypothesis
has been generated by matching the shape descriptors generated from curvature sign maps to
object models. This hypothesis says that a particular smooth surface represents two Of more
structural forms merging smoothly at the seams. The task is to separate these forms and locate
them in R3 space.

The algorithm described here employs a split-merge paradigm. Since it has been concluded
that nothing intrinsic in the surface warrants any specific partitioning, this split-merge operation

is hypothesis-guided. The splitting operation segments the smooth-regions into sub-regions by

105
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the application of some criterion which is consistent with the hypothesis of the constructed form
which occupies the region. These sub-regions are then merged using companion linear forms
_ which either approximate or are identical to the hypothesized constructed forms.

In this chapter, the general split-merge paradigm and algorithm is set forth. The discussion

will be in the following order:

o Hypothesis guided region splitting where the criterion to be satisfied for region splitting is

discussed;

e Region adjacency graphs which describes the basic data structures employed in region

merging;

Hypothesis guided region merging where the merging paradigm is set forth;

o Companion linear forms and the merging predicate where the criterion for merging regions

is established; and

The hypothesis-guided split-merge algorithm where the overall algorithm is discussed.

The particular operations for the split-merge extraction of planes, cylinders and cones will

be set forth in the next section.

5.1 Hypothesis Guided Region Splitting

Let a smooth region described by a surface function S(u,v) on a Monge basis (u,v) be
a representation of one or more smoothly merging constructed surfaces (e.g. cylinders, cones,
planes etc.). The purpose of splitting the surface into sub-regions is to obtain a set of sub-regions
each member of which is in one and only one constructed surface. |
Let (¢; € C) be the set of ¥V constructed surfaces represented by an overarching surface

S(u,v). C is by definition a disjoint set such that {(c;(Nc; = 0) | Vi # j}. Let (r; € R) be the
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RAG nodes

Figure 5.1: A Region Adjacency Graph where the nodes represent regions and the undirected
arcs represent the adjacency relationship among regions.

set of M sub-regions obtained by the splitting the surface S. Again, R is a disjoint set such that

{(riNr; = 0) | Vi # j}. Itis desired that
(ri Cej)and (r; Cex)iff j=k) V(1< i< M)and (1 < jik < N) (5.1)

We shall call equation 5.1 the sblitring criterion.

We have already seen that nothing intrinsic to the data warrants such splitting. To perform
such a split, one must operate on a hypothesis of the forms that are present in the image.

It is further argued that all splitting operations are hypothesis based. If one applies the
split-merge to extract regions of similar brightness from an intensity image, one would split the
image differently than if the intent were to obtain regions of similar brightness gradient. The
abstaction-based regimen which serves as the underpinning strategy for this work simply makes

this explicit.

5.2 Region Adjacency Graphs

The basic structure employed in the region merging process is the region adjacency graph

which was first introduced by Brice and Fennema[45]. A region adjacency graph is an undirected
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graph description of a set of regions in an image. The nodes of the graph represent the regions
and the undirected arcs between nodes represent adjacency relationships of the nodes.

The adjacency relationship is usually determined in terms of 4-connected or 8-connected
neighbourhoods. Thus regions r; and r; in the graph (here we use the notation for regions and
nodes interchangeably to simplify discussion) are adjacent if and only if some subset of P; is
4-connected or 8-connected with P; (where P; and P; are the sets of pixels constituting r; and
r; respectively). We shall denote this such a relationship r; adj r;.

A representation of such a graph is shown in figure 5.1.

5.3 Hypothesis Guided Region Merging

Let (r; € R) be the set of M sub-regions obtained by a splitting operation which satisfies

the splitting criterion of equation 5.1:
(ricej)and (Ce)if =k)V(1<i<M)and (1 £ j,k<N)

The purpose of region merging is to recover the desired {c; € C | (1 < i < N)} (V being the
number of desired surfaces constituted of R). In the context of this work, C is the set of
constructed surfaces within a smooth surface represented by some high order surface function.
Define form-set {O; € |(1<i< K)} as the set of K forms or classifications into which
the splitted regions may be grouped. Define the merging predicate M; which determines if a

sub-set of adjacent splitted regions [r;] belongs to the same instance of class O, i.e.,

M ([r]) = ([r;] € Fx) (5.2)

where F, is an instance of class (0;. The requirement of adjacency may be relaxed to allow the

reconstruction of surfaces which are fragmented by occlusion, but such a relaxation is usually
employed to merge the larger regions which result from the coalescing of all adjacent splitted

regions.

IR
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It is obvious that the selection of the merging predicate M, in any coalescing operation
to uncover constructed surfaces has to be hypothesis guided. Later, we shall consider a form
set which comprises planes and cylinders. For now, we shall consider the general notion of

companion linear forms as operators in the merging predicate.

5.4 Companion Linear Forms and the Merging Predicate

A companion linear form 10 a constructed surface form is one which either approximates or is
identical to the constructed form and is linear in terms of its orienting parameters. In other words,
if a set of pixels P in an image is due to constructed form (c; € €) (in accordance to notatioq
introduced in section 5.1), and if (\; € A) is the companion linear form to ¢;, then P fits to form
)\; within some criterion based upon the goodness-of-fir. The motivation for companion linear
forms is that they are easier to fit to the data than the original forms which may be non-linear
with respect to tilcir orienting parameters.

Companion linear forms are applied in xh’e merging process as an operator in the merging
predicate M to determine if the regions in some set of adjacent splitted sub-regions [r;] should
be merged.

Since the decision whether to merge the regions is based upon how well they fit the companion
linear form, the goodness-of-fit measure is critical to the process. In the section 4.1.3 discussion
of parameter estimation, it was shown that if a Gaussian noise distribution is assumed for the

data, the x? measure:

= i (Zi - .fa(iivi,yi))2

=1

(equation 4.7) is a good measure of how well a bivariate function f(z,y) fits a set of .V data
points. Thus the x? measure may be used as a merging predicate operator. When the data points
U;’Zl P; of the set of sub-regions [r;] (where P; is the set of points in sub-region ;) are fitted

by the companion linear form to the hypothesized constructed form within some x? tolerance,
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the sub-regions may be said to be compatible under the imposed hypothesis. Since the area of
the region being fitted varies, the x? value should be normalized by the area of the region. The

merging predicate operator may be written as:

M
(%X(H Pi,f,a) < fx-:q) = ([ri] € Fi) (5.3)
where M is the number of regions being merged, F; is a surface of the constructed form
corresponding to the companion linear form described by the bivariate function f, a is the set of
parameters of f obtained by fitting the f to Uf‘il P, N is the total number of pixels in regions
being merged, €, _sq is the x? error bound, and X is the function for computing the x? given by
equation 4.7.

Equation 5.3 leaves something to be desired in the region merging paradigm. Let some set of
sub-regions § be determined to belong to the same constructed surface. The merging aIgén‘thm
now considers merging some sub-region r; to . The fitting of (R U {r}) to the companion
linear form yields the function f(z,y), and equation 5.3 is satisfied in that the x? value for
the new region falls within the tolerance bound. The problem is Lhrat re is much smaller than
the regions encompassed by R and the y? expression (equation 4.7) is heavily weighted by R.
As sufficient erroneous sub-regions are incorporated, the y? tolerance bound will eventually be
exceeded. We are therefore faced with the slippery slope problem of determining at what point
the error began. It is impossible to set ey ;4 10 be so sensitive as to reject such spurious region
recruitment without making the system unstable.

Clearly equation 5.3 has to be augmented to solve the problem. This may be done by
obtaining the x? errors (after a is obtained by fitting of (R U {r¢})) of the fit of f to each of
(RU {rx}), R, and 7. If the x? error bound is exceeded for any one of the three, the merge is

abandoned. Thus equation 5.3 may be modified to yield the merging predicate given by:

CONNECTED ([r:))
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1 M
A (T\-/-X( UPifa) < qu)
=1

/\{(mxm»ﬂa) < fx-sq) IV(1<ig M)}

— ([r] € Fi) (5.4)

This is the merging predicate applied to the merging algorithm,

Notice that the parameters of the companion linear form are estimated directly from the
original data. This keeps the algorithm stimulus bound in the merging operation while it operates
upon the higher level hypothesis. Another comment to be made about merging predicate is that
the use of the y? measure as a threshold in the merging algorithm is not as dependent upon
the Gaussian assumption as is the fitting algorithm because the x? measure is used only as a
comparison of fitting accuracies for purposes of hypothesis ven'ﬁcation. All this process needs
to claim is that a poorer \? value signifies a poorer fit for a particular signal to noise ratio in the
data. It will be shown later how companion linear forms are capable of parameter estimation of

the constructed forms as well.

5.5 The Hypothesis-Guided Split-Merge Algorithm

Assume that the hypothesis generation process has produced a hypothesis (by matching
models to the Gaussian-mean curvature sign map and the smooth surface segmentation with high
order polynomials) that N constructed surfaces {c; - -cy} are present in an image, and that
these constructed surfaces are embedded in K smooth surfaces {s; ---sx }. Assume, too, that
the hypothesis yields an approximate mapping from {¢; ---cy} to {s1---sx} (i.e. the subset
of smooth surfaces which encompasses each particular constructed surface is contained in the
hypothesis). Normally the subset of smooth surfaces which encompasses a particular constructed
surface has only one member since constructed surfaces are usually wholly contained in one
smooth surface, but this is not always the case. Figure 5.2 is an example of such a mapping

hypothesis. While cylinders may be modeled with one high order polynomial the torus in the
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Figure 5.2: The entire smooth surface of a torus is split into four smooth polynomial surfaces.
The region boundaries cannot be predicted.

figure encompasses four such surfaces.

The algorithm is as follows:

1. Pick a hypothesized constructed surface ¢; which has not yet been processed through the
algorithm and let the hypothesized set of smooth surfaces which is encompassed by c; be
Si.

2. Split each member of S; into sub-regions {r; € R; |1 < j < M} in accordance to the

splitting criterion in equation 5.1 (The splitting operator is determined by the type of

surface of the hypothesized constructed surface ¢;).

3. Each subregion r; is assigncd a split-parent pointer to the original smooth surface out of
which it is split and each smooth surface is assigned a set of split-children pointers to the

set of sub-regions generated. The pointers themselves are grouped by labels indicating the

splitting operation employed.
4. Organize R, into a region adjacency graph (RAG).

5. Let the bivariate function f describe the companion linear form of ;.
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(a) Pick a seed node r, in the RAG which is most likely inside ¢;. (This is done by
estimating the center of the hypothesized surface and finding the member of R which

contains it or whose centroid is closest to it.)

(b) Fit function f to the set of data points P, in r, and obtain the set of parameters to
f.a

(c) Compute the normalized x? error of the fit (equation 5.3). If this error exceeds the
x? error bound €, _g,, remove r, from the RAG! and goto step 5a.

(d) If there are no adjacent nodes of the RAG to r,, assign ¢; the region occupancy of
rs and goto step 6. |

(e) Pick a sub-region r; which is adjacent to r, and fit function f to the set of data

points P, in {r,,r} and obtain the set of parameters to f, a.

() Apply the merging predicate in equation 5.4 to the set {r,,rx}. If equation 5.4
resolves to TRUE, fuse r, and i in the RAG, set r, := {ry, r;}, and goto step S¢;

else, remove r; from the RAG and goto step Se.

6. Reduce the region occupancy of each member of S; to reflect the removal of r, and goto

step 1.

To fuse nodes [r;] in a region adjacency graph,

1. Create a new node r;
2. Set the region occupancy to the total occupancy of the merged nodes.
3. For each node in [r,]

o Remove all adjacency arcs which terminate at nodes inside [r;].

o For each adjacency arc leading to some node r,, outside [r;], redirect the arc to

link r,,, t0 7.
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o Include the node in the constituency list of ri. (The new node will therefore

have a pointer to the original smooth surface regions with which it intersects).

1 : To remove a node r, from the RAG, remove all adjacency arcs joining r, with other nodes

in the RAG. Note that this may split the RAG into two RAGs, but the seed region r,

would maintain its adjacency arcs to the RAG to which it is connected.

5.6 Specifics on the Split-Merge Extraction of Planes and Cylinders

Now that the general framework for the split-merge operation has been set forth, we shall
proceed to the specifics of the splitting operators and companion linear forms for the constructed
forms of choice in this work: planes and cylinders.

In overview, the split-merge operation for planes and cylinders is accomplished using the

following concepts:
Planes : Three concepts are applied to the extraction of planar regions from a smooth surface:

¢ The surface nomals of a plane is constant throughout the plane.

o Planes occur at FLAT regions in the Gaussian-mean curvature sign map (where
(abs(H) < €y) and (abs(K) < €x)).

¢ Planar surfaces are already linear in form and so, the companion linear form is

identical to the constructed form.

Cylinders : Three concepts may be applied in the extraction of regions which represent cylin-

drical/conical forms from a smooth surface:

¢ The traces of maximal surface acceleration or curvature run along the circular cross-
section (perpendicular to the axis of rotation of sweep) of cylindrical (or conical)

surfaces.
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¢ Regions which represent cylinders (or cones in general) contain RIDGE regions in

/
the Gaussian-mean curvature sign map (where (H < —¢p) and (abs(A") < ex ).

e Biquadratic surfaces are symmetric around the principal axes of the conic section

generated by a horizontal sectioning plane.

5.7 Specifics of Hypothesis Guided Smooth Surface Splitting for Planes and Cylin-
ders

In this section, the operators necessary to perform the hypothesis guided splitting of smooth
surface regions in the algorithm outlined in section 5.5 are discussed. Recall that the hypothesis
says that a particular constructed surface ¢; is embedded in the set of smooth surfaces S;. Each
smooth surface in S; is described by its image region and a high order bivariate polynomial
function.

The goal is to split each member of the smooth surface S; into the set of sub-regions
{r; € R;| 1< j < M} in accordance to the splitting criterion in equation 5.1. We shall now

describe the splitting operators which apply to hypothesized plane and cylinder surfaces.

5.8 Normal Vector Segmentation

In the case of planes, the split can be based upon the Gaussian and mean curvature sign maps.
One needs to be careful in this. While all planes will map to (abs(H) < ey ) and (abs(K) < €x)
regions in the curvature sign map, not all such regions represent true planes. Consider, for
example, regions at the edge of cylinders where the scanning angle is oblique (see figure 5.3).
Quantization and measurement noise in the range sensing and the surface approximation by high
order polynomials make such regions appear planar. It is therefore necessary to have a hypothesis
that a plane actually exists before labeling the region as a constructed plane.

Consider a situation where a planar region chamfers smoothly into a cylindncal region as

shown in figure 5.4a. The Gaussian-mean curvature sign map would label sub-regions within
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Figure 5.3: The cross-section of a cylindrical surface showing that at the oblique cylinder sur-
faces, the surface appears planar.

"FLAT labelled regions
in the curvature sign map

"RIDGE labelled regions
in the curvature sign map

Figure 5.4: a: A plane chamfering into a cylinder.
of the smooth region.

b: The Gaussian-mean curvature sign map
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Entire surface labelled 'FLAT
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“Edges” of the
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a b

Figure 5.5: a: Two smoothly merging planes. b: The Gaussian-mean curvature sign map of the
smooth region.

the parent smooth region variously as FLAT and RIDGE as shown in figure 5.4b. Clearly,
the curvature sign map which participates in generating the initial hypothesis is incapable of
determining the edge of partition between the planar and cylindrical regions. The same problem
exists in the partitioning of two smoothly merging planes in figure 5.5. The entire smooth region
resolves to one FLAT-labelled region in the Gaussian-mean curvature sign map because the bend
is ‘soft’ enough that no VALLEY regions show (i.e. the mean curvature H does not go below
—ey for all points in the region).

The key to the extraction of the planar surfaces in figure 5.4 and figure 5.5 lies in an
examination of the inclination or surface normal of the regions and not in the rate of change of
the inclination or surface nomals (which yields the curvature).

If we had a scalar metric which measures the likelihood that pixels within a region belong
on the same plane, we could split the parent region into sub-regions in such a way as to satisfy'
the splitting criterion of equation 5.1. Introduce the idea of like-normal neighourhoods. Suppose

we computed the unit normals across the entire smooth region (analytically by computing the
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partial derivatives of the region) which is given by:

—gui - gv17+ W

Vol + g +1

—Gull = T+ @
n

N =

= n*d+n"T+ Y@ (5.5)

where |n| = /9.2 + g,2 + 1 is the magnitude of the surface normal.

Since (N = 1), (abs(n*) < 1.0), (abs(n") < 1.0), and (abs(n*) < 1.0). Hence, define the

like-normal neighbourhood map N as one whose elements are:

N(u,v) = (K(1.0+ n*(u,v))mod8) +
8(K(1.0 + n*(u, v))mod8) +

64 (K n®(u, v)mod4) (5.6)

where mod is the modulus operator and A is the number of values into which to divide the circle
in each dimension. For example, if (A" = 128), the range of variation of the @ and ¢ components
is quantized into 256 values and the range of the & component is quantized into 128 values.
The n* component is scaled at half the n* and n¥ components because the original surface is a
Monge patch and the & component cannot become negative.

This yields a scalar map with values ranging from 0 to 256 in which each value corresponds to
a solid angle of approximately %& steradian wrapped around at intervals of approximately ﬁ
steradian. The like-normal neighbourhood map is then segmented into connected components
of similar values. Each component, then comprises points which vary in surface normal by no
more than %’5- steradian. The wrap around does not affect the connected component analysis

since no two regions with normals S—X‘%"ﬁ steradian apart can be adjacent without triggering

segmentation in the Gaussian-mean curvature sign map. The sub-regions obtained from the

like-normal neighbourhood map therefore conform to the splitting criterion of equation 5.1.
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Traces
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Figure 5.6: a: L-pipe junction which comprises two cylinders merging seamlessly; b: Maximal
acceleration traces along the surface of an L-pipe junction

5.9 Acceleration Band Separation

In the case of cylinders (or cones), it is observed that the maximal acceleration or curvature
vector at each point on that surface will be in the plane of the circular cross-section of the
cylinder or cone at that point. If one were to trace the loci of such vectors at some specified
intervals along the edge of the region, these loci will ‘slice’ the region into bands.

To make the discussion more concrete, we shall consider the segmentation of a L-pipe junction
shown in figure 5.6a which comprises two cylinders merging seamlessly (chamfering smoothly
at the intersection). The entire junction is represented as a single smooth surface in the initial
segmentation. Figure 5.6b shows the desired result of the operation to split this surface into
sub-regions which satisfy the splitting criterion of equation 5.1. We shall call the segmented
sub-region acceleration bands.

Let the unit maximal acceleration or curvature vector at some point (u, v) on a Monge surface

be a(u,v) = at + 37. The algorithm to obtain the acceleration bands is as follows:

1. Extract the boundary of the smooth surface.
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2. Obtain the set of boundary interval points B at regular intervals along boundary.
3. For each point ((5,- = biuil + biy¥) € 3).

(a) Let (7 = b); the trace unit ¢ be a point (floor(vy,7y)) (denoted floor(7)); the trace
set 7; associated with the i** member of B be a set with ¢ as its sole member; and
counter k = 1

(b) Set (7 := ¥ + 0.5@(7x,7.)) and increment k by 1.

(c) If (floor(y) # t), set t := floor(¥) and add t to T;

(d) If t intersects the region boundary (and (t # ﬁoor(bj-))). or k is greater than some

preset threshold, goto 3 else goto 3b.
4. Segment the surface S into bands separated by the set of acceleration traces [7;].

The computation of the maximal acceleration of curvature vector can be accomplished in

three ways:

Principal Directions : We have already observed that the principal curvatures of a surface are
the extrema of the normal curvatures of that surface. The corresponding principal directions
can therefore be applied to the generation of maximal acceleration vectors. Recall that the

principal directions are given by

1,2 = 24

where A = (FN-GM), B=(EN-GL) C =(EM - FL) (equation 4.48) From
equation 4.33 and equation 4.38, we can express E, F,G, L, M, N for surface w in terms _

of the derivatives of g(u,v) as follows:

E=Wu'wu=1+gu2 szu'wu=1+gugu

G=wv'wu=1+gv2
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N = —gul — g, ¥+ W
Va2l + g+ 1
L=w, -N=u M=w,, N=2w
In| In|
N=w, N= -‘ﬁ (5.7)

where |n| = \/g,? + ¢,2 + 1 is the magnitude of the surface normal. By algebraic manip-

ulation, equation 4.48 becomes:

$1,2 =lan”

. (—ﬁ + /B2 —407)
2

where

a = |[n|(FN -GM) = gu(l + gugv) — guu(l + 9v2)
g = ]TZ|(E.V-—GL) =gvu(l+9u2)-guu(1+gu2)
T = lnI(EJ["‘FL)zguv(l+9u2)—guu(1+gu9v)

For some angle 1, the normal curvature of a surface in the direction of that angle can be
computed by applying equation 4.44:

_ Ldu® +2M dudv + N dv?
T Edu? + 2F dudv + G dv?

Kn

where du = cos(¥) and dv = sin(y). The principal curvatures corresponding to the
principal directions can thus be computed and the direction corresponding to the maximal

curvature obtained.

Derivatives of Surface Normal : Another way to look at the direction of maximal surface

acceleration or curvature in terms of the variation in the unit surface normal.

—gul — g+ W

Vol + 9.7+ 1

-guﬂ." gvﬁ‘{' w
|n]

N =
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w (5.9)

n|
where 7 = guguu + guGuv + GuGvv + Juguv-
The direction of maximal change in the unit surface normal in the plane of the Monge

basis is therefore given by:

1| v = In? (gu + gus) (5.10)

¢ =tan~
gun — |nf? (Guu + Guv)

This computation has an advantage over the principal directions computation in that it does
not require the computation of both principal directions and the extra step to test for the

direction corresponding to the larger of the principal curvatures.

Derivatives of Gradient : Finally, the direction of maximal surface acceleration or curvature

may be approximated by taking the gradient of the gradient of the surface:

A(u,v) = V(Vg(u,v))
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Arcs Sharing a Trace
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Figure 5.7: More than one arc may map to the same acceleration trace in the modified region
adjacency graph

= Guul + Guol¥ (5.11)

This is not strictly correct in terms of surface acceleration or curvature since it is only the
gradient of change of the maximal velocity vector of the surface, but experiments have

shown that it is a useful approximation.

5.10 Modifications to the Region Adjacency Graph

Modifications are necessary in the adjacency relationship when region adjacency graphs
are applied to acceleration bands. The 4-connected or 8-connected neighbourhood criterion
discussed in section 5.2 does not apply because all the sub-regions in the split are separated by
the acceleration traces (see the example for the segmented L-pipe in figure 5.6).

Define the trace-neighbours of an acceleration band to be set of acceleration traces which
are 4 or 8 connected with the band; and, define the band-neighbours of an acceleration trace 10 »
be the set of acceleration bands similarly connected to the trace. We now have a modified region
adjacency graph in which the nodes are the acceleration bands and the arcs are the acceleration

traces. Note that more than one arc in the graph may map to the same acceleration trace as
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shown in figure 5.7. Theoretically, this should not happen since the acceleration traces may get
very close to each other, but never actually intersect. In practice, however, traces are rounded

into the pixels they occupy — and such trace mergings occur.

5.11 Specifics of Hypothesis Guided Region Merging for Planes and Cylinders

At this point, the operators necessary to perform the hypothesis guided merging of sub-
regions generated by the splitting operations of section 5.6 into constructed surface regions are
discussed. These operators are utilized in step 5 of the algorithm outlined in section 5.5.

Recall that the algorithm is based upon the fitting of companion liﬁear forms of the hy-
pothesized constructed surface to the splitted sub-regions and observing the goodness-of-fit to
determine whether a sub-region ought to be recruited into the constructed surface. We shall now
discuss the companion linear forms for planes, cones and cylinders.

Later it will .be shown how these companion linear forms are capable of parameter estimation

of the constructed forms as well.

5.11.1 Companion Linear Form for Planar Regions
Since the planar equation given by:
a+br+ey=z (5.12)
is a linear function in the form of equation 4.8, the companion linear form is identical to the

constructed form (i.e. it is the plane function).

5.11.2 Companion Linear Form for Cylindrical Regions

The depth function z = f(z, y) for cylinders, however, is a non-linear function in terms of

the angles of inclination and offsets of the cylinder axes. An approximating linear function for
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the surface is required — such a form is the biquadratic surface (equation 4.56):
z=a+bz+cy+dzy+ex?+ fy?

which was analyzed in sections 4.4.2 and 4.4.3

In brief review of our analysis of the biquadratic function, it has been shown that:
¢ Any horizontal section of the biquadratic function yields a conic section
¢ The function has two perpendicular principal axes in the x-y plane.

The function is symmetric around the principal axes.

e When d? — 4ef = 0 (known as the characteristic of the biquadratic form) the function is

a RIDGE region everywhere (therefore it is capable of fitting cylinders).
o The characteristic is invariant under translation and rotation.

It will be shown later, in our discussion of cylinder parameter estimation, that this function is
an approximation (rather than an exact fit) to cylindrical surfaces. It will be shown, however, that
the ratio of the fitting error to the area of the fitted region remains constant and is independent

of the length of the cylinder being fit.



CHAPTER VI

DETERMINING THE POSE OF CYLINDERS

Once a region in a scene is known to be a cylindrical surface, the question remains as to
how the pose of that cylinder may be extracted. In this chapter, we shall discuss how the pose
parameters may be estimated using the coefficients of the biquadratic surface fitted to the region

and how this may be refined by fitting the cylindrical function to the data.

6.1 Biquadratic Properties-Based Cylinder Parameter Estimation
In section 4.4, the properties of the biquadratic function:
z=a+bz+cy+dry+ex’+ fy? equation 4.56

has been discussed in detail. In the previous section, we have seen how this function is applicable
as a companion linear function for hypothesis-based region merging to cylinder regions in a
range image. In this section, we shall see the utility of this function for parameter estimation of
cylinders.

Assume that from the previous matching and split-merge operations, the region in the range
image occupied by a cylinder is known. Assume, too, that the radius of the cylinder is known
from the model. The task now is to place the cylinder in R? space.

A cylinder in R? space can be wholly determined by the equation of its axis and the radius

of its circular cross section. The task is then to acquire the equation of the cylinder axis.

126
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6.1.1 Axis Projection on the x-y Plane

The equation of the projection of the axis in the x-y plane may be obtained through the
ensuing analysis.

The partial derivatives of the biquadratic function are:

8z
% = b+dy+2€.’1:
—(?—Z: = c+dz+2fy
dy

By chain rule, we obtain:

@_b+dy+2ez (6.1)
0r  c+dz +2fy '

In the space of lines parallel to the cylinder axis which lie on the cylinder surface, we enforce
the relation
dy

L-m= constant (6.2)

as a constraint on equation 6.1.

These lines are thus defined from equation 6.1 and equation 6.2, we have:
m(c+dz +2fy)=b+dy+ 2ezx (6.3)

Differentiating expression 6.3 with respect to z, we have:

om om dy _ dy
c(’)z+dm+2fy3x+2fmdx_ddr+2e (6.4)

But, as m — constant, %—': — 0. Therefore, applying the constraint of equation 6.2 to equa-

tion 6.4, we have:

dm +2fm? = dm+ 2e

:{:ﬁ = tanf 6.5)

where 6 is the angle between the projection of the cylinder axis on the x-y plane and the z-axis.

3
[
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6.1.2 Test of ‘Cylinderness’

From equation 4.63, the principal axes of the biquadratic function are given by:

d
tan2¢ = ppay
Applying the trigonometric identity tan 26 = %@; to equation 4.63 and equation 6.5, we have
d=-2ef (6.6)

Comparing equation 6.7 with the characteristic of the quadratic form given in equation 4.84 and
table 4.4, it is evident that this relationship indicates that horizontal (z = constant) section of the
function is a parabola and the three-dimensional form is a RIDGE or VALLEY region everywhere.
Equation 6.5 can thus be thought of as a parabolic constraint, forcing the parabolic characteristic
(d® — 4ef = 0) on the biquadratic function. |

Thus, from equation 6.6 we have

abs [1 - abs (—2:1/8)} < €cylinder (6.7)

which constitutes the test if a set of data, fitted by a biquadratic function, forms a cylindrical

surface.

6.1.3 Biquadratics are Only Approximations of Cylinders

Let the coordinate axes be rotated by an angle 6 to coincide with the principal axes. From

equation 4.86, the surface function is described by:
A+ Bu+Cv+ Eul+ Fvl=:
where

E = ecos’d + fsin?d + dsinfcosb (6.8)

F = esin?d + fcos®d — dsinfcosé ' (6.9)
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Figure 6.1: Decomposition of the rotated function A + Bu+ Cv + Fv? =z

Applying the relation tand = £, /% (equation 6.5), and by trigonometric manipulation, the right
P 7 &q

hand side of equation 6.8 reduces to zero. F resolves 1o

e? + f2 4+ 4ef
F=ce————- 6.10
e+ f ( )
The surface function in the rotated coordinate system thus becomes:
A+Bu+Cv+ Fvi=2z (6.11)

The first three terms of equation 6.11 describes a plane. Equation 6.11, therefore, describes_
the function Fv? = z’ summed with a planar surface (see figure 6.1).

By the preceding analysis, it can be seen that the biquadratic surface is only an approximation
of a cylinder, the cross-section of which may be described by z2 = v? + r?, where r is the radius

of the cylinder (see figure 6.2).
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Cross-section of

a Cylinder

Cross-section of
_a Biquadratic Surface

Fv?

R

Figure 6.2: The biquadratic surface is only an approximation of a cylindrical surface.

This approximation is appropriate, firstly, bccausc the error per unit length of the cylinder
to the fitted biquadratic surface is constant. Hence, the normalized y? metric of equation 5.3
holds. Secondly, the error distribution is symmetric around the cylinder axis. This ensures
that the principal axis of the biquadratic function lies on the cylinder axis. Furthermore, in our
discussion of the chapter III and section 5.8, it has been shown that the data is more reliable at
the top of the cylinder (close to the projection of the axis onto the x-y plane). At the edges where

the surface is oblique to the range scanner, the data is less reliable and even appears planar.

6.1.4 Geometric Description

It should be observed from expression 6.5 that a non-imaginary tangent of the cylinder axis

exists only if the coefficients of the square terms of the biquadratic equations have the same

sign. If this is so, then the sign of F in equation 6.11 takes the same sign as e and f (see

equation 6.10). Thus, if e and f are positive, the function describes a trough (the concave inside
of a cylinder) and if they are negative, the function describes a ridge (convex top of a cylinder)

- see figure 6.3.
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x a. Both e and f positive b. Both ¢ and f negative

Figure 6.3: a. Positive values of e and f: The function describes a trough (the concave inside of
a cylinder); b. Negative values of e and f: The function describes a ridge (convex
top of a cylinder)

Figure 6.4: When the axis of the cylinder is parallel with one of the coordinate axes and fitting
errors may give rise to a ‘bowing’ of the fitted surface away from the cylinder axis
yielding a ‘saddle’.
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Principal Axes of the
Biquadratic Function

\. 7
\\

\ Contours of the
\ Biquadratic Form

A)
»

Figure 6.5: The principal axes in a saddle biquadratic form

‘When the signs are different, the limiting two-dimensional form becomes a hyperbola and
the three-dimensional form is a saddle (see table 4.3 and table 4.4). | This happens only when
the axis of the cylinder is parallel with one of the coordinate axes and fitting errors give rise
to a ‘bowing’ of the fitted surface away from the cylinder axis (see figure 6.4). Even in such
situations, the function is symmetrical around principal axes which are perpendicular to each
other (see figure 6.5). The principal axes can still be computed by taking the absolute values
of e and f before applying equation 6.5. Experimentation has shown this to be a very rare

occurrence (it was never observed).

6.1.5 A Solution to the Quadrant Ambiguity

We have already observed that the computation of the principal axes by equation 4.63 and

equation 4.64 that the computation is periodic on Z. The computation of the axis of minimal

Z
curvature by equation 6.5 is also ambiguous on an interval of . A resolution of this ambiguity

is needed. One could compute the normal curvatures of the biquadratic surface for both angles

(%) apart and determine the direction of minimal curvature. Fortunately, this is not necessary.
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(
’
’

g,, varles linearly :with
rXspecl to x at rate d

Figure 6.6: Convex biquadratic function with axis of symmetry passing through the first and
third quadrants

The necessary information can be obtained by simply observing the signs of the coefficients of
the biquadratic function.
Let us first make an observation concerning convex surfaces which satisfy the test of equa-

tion 6.7. We observe that

Juv = Gvu = d (612)

This says that the rate of change of the u-tangent with respect to v is equal to the rate of change
of the v-tangent with respect to u; and that these rates are a constant equal to the coefficient of -
the cross-variable zy term, d.

Consider figure 6.6a of a convex biquadratic function (both e and f are negative). The u-



134

(e < 0)&(f<0)| (e>0)&(f>0)

Convex Surface | Concave Surface

d<0 Quadrants 2,4 Quadrants 1,3

tand < 0 tand > 0

d>0 Quadrants 1,3 Quadrants 2,4

tand > 0 tand < 0

Table 6.1: Summary of the quadrant/gradient analysis for biquadratic functions modeling cylin-
ders and cones.

tangent vectors at points (z1,y;), (z1,¥2) and (z1,y3) are gu(z2,¥1), Gu(Z2,y2) and g, (z2,y3)

respectively. By observation, it is evident that

Gu(z2, 1) < Gul(T2,42) < Gu(z2,93)

It is also clear that g, increases monotonicly with increasing y. By the same process of obser-
vation, it is evident that the v-tangent vectors gy,(z1,y2), gu(z2,y2) and gy,(z3,y:) are also a
increasing progression in terms of magnitude. Thus g,, = g, for this surface configuration with
the cylinder axis in the first and third quadrants is positive; or, the coefficient of the cross-variable
Ty term is greater than zero (d > 0).

By the same analysis, it can be shown for figure 6.6b that a convex biquadratic function
modeling a cylinder with axis inclined in the second and fourth quadrants has negative g,, = g,..

Similarly, for a concave biquadratic function describing the inside surface of a cylinder, (both
e and f are positive). The u-tangent and v-tangent vectors decrease with increasing y and z
respectively when the cylinder axis is inclined in the first and third quadrants; and, the gradient
of change of the u-tangent and v-tangent vectors is positive with respect to y and z respectively.

Table 6.1 summarizes the preceding analysis which applies for cones as well.
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6.1.6 The Algorithm for Axis Determination

Up to this point, we have only discussed how the gradient of the projection of the axis of
the cylinder axis on the x-y plane is estimated. To define a cylinder, the entire line equation of
the axis in three-dimensional space is required along with the radius of the cylinder. As we have
done all along, a hypothesis for the radius of the cylinder is assumed to be available from the
object model. What is required then is the axis description. Since a line in three-dimensions can

be described by the pair of gradient-intercept equations,

m,z+c¢, = =z

myr+c, = Y (6.13)

These equations describe the projections of the axis on the x-z and x-y planes respectively with

respect to z (see figure 6.7).
What we have to work with are the original data describing the cylinder, an estimate for m,

(and 8 = tan'lmy) and the set of coefficients of the biquadratic function which fits the data.

We make the following observations:
o The axis of the cylinder and the ‘top’ of the cylinder are colinear in the image data space.

¢ The derivative of the function describing the cross-section of a cylindrical surface is zero

at the top of the cylinder.
o The biquadratic fit is most reliable at the centroid of the data region being fitted.
The algorithm, based upon these observations, for computing the axis equations is as follows:

1. Compute the centroid (z., y.) of the connected region which has been determined to belong

to the cylinder surface.

2. Rotate the coordinate axes u-v by the inclination of the axis of the cylinder (the-major axis
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Figure 6.7: The three-dimensional description of a cylinder.
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of the biquadratic function or principal axis of maximal curvature) # and compute point

(uc, vc) corresponding to (z., y.) (see figure 6.8).

3. Obtain the function z = f(u,v) for the section of the biquadratic surface generated by
a vertical sectioning plane in the direction of the minor axis (principal axis of minimal

curvature perpendicular to the major axis) passing through the (u, v.).

4. Compute the maximal (or minimal) point (u,, v,) for the sectional function from its first

derivatives.
5. Compute the corresponding maximal/minimal point (z,, y,) t0 (up, vp).
6. Compute the y-intercept (c, of equation 6.13) from (z,,y,) and m,,.

7. Compute the tangent (m, of equation 6.13) of the biquadratic function in the vertical plane

described by y = myz + ¢y

8. Compute the peak z value, z,, of the biquadratic function at point (z,,y,) and compute

the z-intercept of the line on the top of the cylinder ¢;’ from (z,,2,) and m..

9. Compute the intercept of the cylinder axis from c,’, ¢ = tan"!m, and the radius of the

hypothesized cylinder.

6.1.7 Axis Rotation and y-Intercept Computation

Let the centroid of the region occupied by the cylinder in the range image be (z.,y.). By
algebraic manipulation of the rotation formulae (equation 4.61 the centroid of the region in a_

coordinate system rotated by 6 from the x-y axis is:

z.cosd + y.sinf

Uc

ve = —z.5ind + y.cosd (6.14)



138

u = U, sectioning plane Cylinder ‘Top'

e 2l /

Figure 6.8: The cross-sectional function for computing the top of the cylinder.
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It has been determined in section 4.4.3 that when the coordinate axes are rotated to corre-

spond with a principal axis of a biquadratic function, the cross-variable drops out and we have

equation 4.87:

A+ Bu+Cv+ Eul+ FuP=:

where

B = bcosf@ + csind
C = ccosf — bsind
E = ecos?d + fsin?6 + dsinfcosd

F = esin®f + fcos?8 — dsinfcosd

Along the plane u = u,, the biquadratic function traces the locus:

z=(A+ Buc+ Eu )+ Cv + Fv?

At the extremal point of expression 6.15,

dz

— =C+2Fv =20
dv

Thus, the peak or trough point of the section occurs at

(6.13)

(6.16)

(6.17)

Notice that, v, is independent of u. (equation 6.16). This is to be expected since we have already

shown in section 6.1.3 that the cylinder axis runs parallel to the v-axis.

Having obtained (u,,v,), one can easily compute the corresponding point in x-y space from

the rotation formulae (equation 4.61).

The y-intercept of the cylinder axis is thus given by:

cy = Yp — Zptand

(6.18)
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Figure 6.9: Estimation of the projection of the axis onto the x-z plane

6.1.8 Estimation of the Axis Projection Onto x-z Plane

Once the projection of the axis onto the x-y plane has been computed, the task remaining

is to compute the half of the three-dimensional axis description (equation 6.13) which describes

the projection of the axis in the x-z plane. This can be obtained by first computing the equation,

in the x-z plane, of the line at the ‘top’ of the cylinder (which is parallel to and colinear

image data space with the cylinder axis).

in the

This, in tum, can be accomplished from the locus of intersection between the myz + ¢, = y

plane with the biquadratic function. This locus is:
z = (a+cey+ fey)+

(b+ecmy+dey+2fmycy)z +

(dmy + e + fmy)z?

The gradient of z with respect to r may be computed by taking the first derivative of

(6.19)

WU e
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equation 6.19, giving:

d
= =btem, +de, +2fmye, +(dmy e+ fmy) (6.20)

In accordance with the assumption made in section 6.1.6 that the biquadratic fit is most reliable
at the centroid of the data region begin fitted, the gradient m, is computed at z, (obtained from

(u¢, ve)). Thus
m,=b+cmy+dcy+2fmycy+(dmy+e+fmy"’):z:p (6.21)

At point (z,, y,), the correspond z, can be ascertained directly from the biquadratic function.

Therefore the z-intercept of the ‘top’ of the cylinder may be computed as follows:
c:'=zp = m.zp (6.22)

As shown in figure 6.9, z-intercept of the cylinder axis can be computed from ¢’ by:

r
cOs¢

(6.23)

/
C;: =Cz —

where the angle of incline of the axis is ¢ = tan~'my, and r is the radius of the cylinder.
While this constitutes a second order estimation (it depends on the accuracy of the estimation

of the projection of the axis onto the x-y plane), experiments have demonstrated that there is

sufficient accuracy to permit convergence of the non-linear function fitting of the actual cylinder

function to the data.

6.2 Non-Linear Cylinder Fitting

In section 4.1.5, non-linear parameter estimation was discussed. In this section, the cylinder
will be used as an example of a constructed form for which non-linear fitting is required. In
order to apply the Levenberg-Marquard: algorithm, the analytic expression for the data in the

form: z = f(z,y;a) and its first derivatives with respect to the pose parameters are required.
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Figure 6.10: Rotation of a cylinder with axis colinear to the z-axis.

Consider figure 6.10 of a cylinder with its axis colinear with the z-axis. This cylinder is first
rotated by an angle —¢ from the z-axis in the x-z plane around the y-axis then by an angle ¢
around the :z-axis; and then it is translated so that the axis projections on the x-y and x-z planes
intersect the z-axis at c, (call this the y-intercepr) and c. (call this the z-intercept) respectively.

The transformations are therefore:

cos(¢) 0 sin(¢) 0 cos(f) sin(d) 0 O
0 1 0 0 -sin(8) cos(8) 0 0O
[z vy 2z 1

-sin(¢) 0 cos(¢) O 0 0 10

0 0 0 1 0 0 01
1 0 0O
0 1 0 O

(6.24)

0 0 1 0
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These evaluate to the single transformation matrix 7

(cosf(zcos¢ — zsing) — ysind)
(sinf(zrcos¢ — zsing) + ycosd + ¢, )

(zsing + zcos¢ + ¢;)

1

- -

The equation of a cylinder with axis on the z-axis is:

(6.23)

(6.26)

Applying the parameterization to the coordinate system u, v, w, the transformation yields the

system of four equations:

z = cosf(ucosp — wsing) — vsind

y = sinf(ucos¢ — wsing) + vcosd + ¢,
z = using + wcos¢ + ¢,
w = r? -2

Eliminating u, v and w from the system, we are left with the form:

Itanqb tang tand <y — rtanf — cy)
cosf coséd tan?4 + 1

y—:z:lan@—cy)2+c
z

2 2
cosg(tan’s + 1)y/r* + (cosH(tanN) + 1)

Let

A = y-—ztand - ¢,

v = tan?@ + 1

a = lan2¢+1

(6.27)

(6.28)
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Then equation 6.28 becomes

_ _tang  tangtanf /2 ( 3 )2
z_zcosﬂ+ cosé A + acosgyr* - c0s6) T (6.29)

To compute the Hessian, the first derivatives of equation 6.29 with respect to the parameters

of pose are réquired. They are given by:

9z tangtand  tang L
9z _ \ o
a9 T o8 T ~c0s38 [ (1 +5sin®8) + tané( -z Qﬁtanﬁ)] +

afcosd(z + 23tand — Asindcosh)

ycosify/r? — (%)2
2
0z _ T + Jtanf +<2mn¢—asin¢) r’—( 8 )

?9715. cosfcos?op cosg cosf
9z 1 afcosd — tangtand
- [ - N 2
dey TEOST N 058, [r2 ~ (;5‘375)
dz
e, !
dz racosd
oo T 6.30
or ) 3 \2 ( )
- ()

In the previous sections, the axis of the cylinder was estimated in terms of the gradients of

z and y with respect to z, m, and m, respectively. These estimates can be converted to ¢ and

# as follows (see figure 6.11):

(631)
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Figure 6.11: Conversion between gradient notation and ¢-8 notation.



CHAPTER VII

ON THE EXTRACTION OF EDGES FROM RUN-LENGTH
REPRESENTATIONS

7.1 Run Length Regions

In the major portion of the work, data are organized as regions which occupy space in the
imagery. The data format to represent this occupancy is the run-length region (see figure 7.1).
Each region is assigned a list of runs, each of which is a three-tuple: (y;,x/;,x2;) where y; is
the y coordinate (line number in the image) and x/ ; and x2, are the start (lowest column index)
and the end (highest column index) of z coordinate values in line y;. We shall designate the &**

region R and the i* run r; = (yi,xI;,x2;). Thus r; in region R, is the set of pixels:
{(z,y:) € Re[vxl; Lz <22} (7.1)
If region R, is made up of N runs, then
N
Uri=Re and rinr #0 < (i = j) (7.2)
=1
7.2 Scanning Algorithms for Extracting Region Boundaries

Given a region, the task of computing its boundary may be simply accomplished by generating
a labelled image representation of the region where all points in the image belongs 1o the region
if and only if its pixel value bears some labelling value. A walking algorithm may then be

applied to trace the boundary of the region. Using the scanning template in figure 7.2, to obtain

146
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column
X,{n}

Run List

(n—Lx“(n—l),xz(n—l)).

n-1
(o, x ), x,(0)), row n

n+1
@+ Lx G+l x (n+1)), R:%
(n+2,xx(n+2),xz(n+2)), -

(n,xl(n+3),xz(n+3)).

Figure 7.1: A run-length region representation of spatial occupancy in an image.

3 2 1
4 | pewr 8
5 6 7

Figure 7.2: Scanning template to generate a positively directed boundary
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a positively directed boundary (where the region is always on the left if one walks along the
directed boundary generated), one may begin with any pixel p, at the boundary of the region

and do the following:

1. Set the current boundary point p.r 0 p,. With peor at the center of the template, scan
the pixel’s neighbours in the order 1,2,...8 (call this the scanning index) until there is a
transition in the scanned pixel from outside the region to inside the region. (Let s be the

scanning index at the transition point.)
2. Tag pcwr with a unique boundary label b.

3. Set the p.., to the new boundary position (at the transition point inside the region). Set

s := (s + 3) mod 8 (where mod is the modulus operator).

4. While the scanned point is a region point, set s := (s + 1) mod 8. (The desired point is

the transition from non-region to region.)

5. While the scanned point is not a region point and p, has not been reached, set

s:=(s+1)mod 8.
6. If p, has been reached,

(a) Scan the image for an untagged boundary point.

(b) If a point is found, Set p, to this point (This will take care of holes in the region)

and goto step 2; else exit the boundary tracing algorithm.

7. Goto step 2

This algorithm may be extended to operate directly on the list of runs by ordering the runs
by the y index and considering only the runs +1 line from the current boundary point. A lot
of extra bookkeeping would have to be implemented to label traversed pixels and the runs will

have to be searched for each pixel being scanned by the scanning template.
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7.3 Finite State Machine Approach to Boundary Extraction

In the scanning algorithm in which an image array is used, for each region, the image has to
be labelled (and cleared if labels are to be reused), for each pixel in the boundary, the average
scanning performed is 4 pixels, and for each hole, an average of half the region has to be
scanned to find the hole. Thus for a region of M pixels, K boundary points and H holes, the
number of operations is O(4A + 2M + H 1,;,’-) In the modified algorithm which does not use
an image array, the array needs not be updated. However, if there is an average of R runs per
line the number of operations becomes O(4KN'R + H ‘—2%) excluding the considerable bookkeeping
necessary. Neither of these algorithm exploits the information contained in the topology of the
run list and the constraints introduced by direction of the boundary.

In this section, a finite state machine based algorithm which takes advantage of the run list

topology and the boundary direction constraints is presented.
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Figure 7.3: Boundary segment labels for a positively directed boundary.
7.3.1 The States

Observe that for positively directed region boundary, segments can be grouped into four

forms (see figure 7.3):

Up-Right : Where the boundary is moving up and/or right with the region above and/or to the

left of the undirected boundary points.

Down-Left : Where the boundary is moving down and/or left with the region beneath and/or

to the right of the undircctéd boundary points.

Down-Right : Where the boundary is moving down and/or right with the region above and/or

to the right of the undirected boundary points.

Up-Left : Where the boundary is moving up and/or left with the region beneath and/or to the

left of the undirected boundary points.

' These segment types constitute the states of our finite state machine. Let the positively
directed region boundary comprise the ordered boundary segments {by,b,,...,bx5}. State tran-

sitions occur for each move from one segment to the next consecutive segment.
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7.3.2 State Transitions

In the computation of the boundary of some region Ry, le't Pewrr b€ the current point on
the boundary; R.w» be the current run; and R be the next run in a positively directed ‘trek’
around the boundary.

Let
R(n) denote the set of runs in R, on line n
R(n)ip)» R(1)r(p) denote the subsets of R(n) to the left and right of point

p respectively.

R(n)i(re)» R(n),re) denote the subset of R(n) completely to the left and right

of run Rc respectively.

Tlefts Tright denote the leftmost and rightmost points of run r respec-
tively.

z(p) denote the z (column) value of point p.

line(r) denote the y (line or row) value of run r.

Define, also, the following predicales:
IN(p,R) which searches a set of runs R for a run r such that
z(r1) < 2(p) < z(rrign ). The function retums r if it is found,

else NIL is retumed.

Tip(R,t)  which searches a set of runs R for a leftmost run A which sat-
isfies the condition: z(rip) < z(Mes) < 2(Trign ). The function

returns A if it is found, else NIL is returned.

Tign(R,r) which searches a set of runs R for a rightmost run A which sat-
isfies the condition: z(rep) < z(Arignt) < T(Trigh)- The function

i returns X if it is found, else NIL is retumed.
Finally, we define the ‘walking’ function:

WALK (n,p,r,end)
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which adds points to the boundary list moving from point p toward the specified end point of

run r (end may be either left or right designating riep Or rygn respectively.) such that:

o All the points are on line n except for the final point which will be the specified end point

of run r. Run r will always be +1 line from n.

¢ If p is on line n, the set of points added to the boundary includes point p as the first point,

else p is excluded (it would have been added in the previous state transition).
o If r is not on line n, renq (i.€. riep OF Trigne) is appended to the boundary list.

At the end of the WALK, r is tagged as being <left-used> or <right-used> with end
being left or right respectively. Note that the direction of walk (left or right) is not specified. The
walk is leftward (decreasing column index) if (z(p) > renq) and rightward (increasing column
index) if (z(p) < Tend).

For example, WALK (%, pcuwrr , Rnexs, right) does the following:
1. Add point (z(pewr ), 1) to the boundary list if pew- is not on line i.

2. Add points

(I(pcurr) +1, 1) ’ (I(Pcuﬂ) + 2, 7') y' T ,(I((an )’th‘)v l)

to the boundary list.
3. Tag Raex as being <right-used>.

4. Set pewr = (Rneu )righl

Figure 7.4 is the transition table making use of these operations to generate a closed bound-
ary (for readability, Rcw.r is written Rc and p..»r is written simply as p when they appear as
subscripts). The rows of the transition table represent the FROM states while the columns are

the target TO states. Each transition box in the table has one or more figures showing the run
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configuration. The horizontal lines in these figures represent the runs in the region with the solid
black run being the current run R..,. The current point before the transition is marked by the
‘e’ on Reyr. Each transition box also contains one or two sets of ‘Test-Operation’ pairs. Each
Test contains two predicates which are performed sequentially to specify a decision tree. For
example, from state Up-Right, if the test IN (pauwr, R(i — 1)) evaluates to TRUE (returning a
run Ra.x), Down-Left and Up-Left are eliminated as possible target states. The second test:
Zie (R(2)r(Re)» Rnext ) selects the TO state from between Up-Right and Down-Right. It will also
be noticed that some tests lead to ambiguous TO states. This is not a problem because the rows
1 and 4 are identical in Test and Operation as are rows 2 and 3. The ambiguities in rows
1 and 4 are in columns 2 and 3 and the ambiguities of row 2 and 3 are in columns 1 and 4.
The ambiguity is resolved in subsequent transitions. The transition table, therefore specifies a
finite state machine with ¢-moves(96, 120]. For example, from state Up-Right, satisfying the
test of condition 2 yields two possible target states: Down-Left and Down-Right. From states
Down-Left and Down-Right, however, all the tests and operations are identical and there is no

ambiguity between Down-Left and Down-Right as TO states - thereby resolving the ambiguity.

7.3.3 The Algorithm

Given a starting point, the finite state machine in figure 7.4 will generate a closed positively
directed boundary. This has 1o be repeated for all the holes which may exist in the region.
Holes are located after each closed boundary is found by searching for unused ends of runs. The

algorithm follows:

1. Organize the runs into an array of run lists indexed by line number and ordered from left

to right.

2. Set up for external boundary: Set STATE := DOWN-LEFT; p..., to the left end of the

top left run; and pusr = pPewr. Tag the left end of the top left run as <used>.

RN IR )

[ I I
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® Runs on the same line
™Y ordered from left to right

N

\~.——>’(xlfxg b, %) “*) o@ ®

Line Indices

IS | e e e

ooo...’

Figure 7.5: Organization of the region run lists for boundary extraction

3. Extract the external boundary:

Loop
Apply the finite state machine for one state transition.

UNTIL Pecwr = Dstart
4. Proceed to operate on holes:

Loop while there are <unused> ends

(a) Set up for each hole: Set STATE := UP-RIGHT; pcur to the top left
<unusad> end (of some run); and psgrt = Pewrr- Tag the top-left <unusad>
end as <usad>.

®)
Loop

Apply the finite state machine for one state transition.

UNTIL pewr = pstan

Loop end



CHAPTER VIII

EXPERIMENTAL RESULTS

This chapter sets forth the experiments performed in the course of this work. The discussion
is arranged in three sections. The first details the apparatus employed; the second profiles the

experimental procedure; and, the third describes the results of the experiments performed.

8.1 The Experimental Apparatus

The experimental apparatus comprises range sensors, computing hardware and the software

tools. Each of these will be discussed in turn.

8.1.1 Sensor Hardware

Data obtained from two laser range sensors developed by the Environmental Research Institute
of Michigan are analysed in the course of this work. The first is the /ntelligent Task Automation
sensor{156] (henceforth referred to as the ERIM/ITA scanner). The data available from this
scanner is in the angle-angle-range format and the sofiware does not exist to extract true Cartesian
(x-y-z) readings from it. Data from the ERIM/ITA scanner are used to illustrate the robustness
and generality of the curvature-based analysis. The rest of the data are obtained using the second |
sensor developed for the United States Postal Service[70, 141, 146] (henceforth referred to as
the ERIM/USPS scanner). Software exists to convert the native angle-angle-range readings from

this scanner into true Cartesian (x-y-z) form. Most of the experimental work is performed with

156
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data obtained from this scanner. The ensuing discussion pertains specifically to the ERIM/USPS
scanner although the ERIM/ITA scanner operates under the same principles and possesses similar
geometry (albeit with different parameters).

The ERIM/USPS scanner operates under two scanning modes — static and dynamic. In the
static mode, the scanner sweeps out a solid angle in the same fashion as the electron gun in a
television picture tube. This produces an image in which each pixel is addressed by the angle of
sweep (row and column) and the value of the pixel describes the range or distance to a surface
in the target image at that point. In dynamic mode, one axis of scan is removed yielding a single
line scan. A conveyer belt then draws the objects to be scanned across this scan line in the
target area. Since the experiments employ the scanner in the static mode alone, dynamic mode

operation will not be discussed.

Sensing Mechanism

The ERIM/USPS scanner is a three-dimensional ‘active’ laser ranging sensor. A beam of
sinusoidally amplitude modulated laser light irradiates each element of a target scene. The laser
radiation which originates in a laser diode, is collimated by the Transmit Optical System into a
narrow beam, and is directed at the target area by a scanning mechanism. The retum signal from
the laser radiation bouncing off the target is detected by the scanner’s Receiver System which
comprises the “scanner, Receiver Optical System, Detector Diode, Digital Phase Detector and
the Logarithmic Amplifier with its analog-to-digital (A/D) Converter.”[70] (see figure 8. 1); In the
figure, 700 MHz is the operating frequency of the scanner in static mode and in dynamic mode,
the modulating frequency is 280 MHz. The Receiver Optical System is essentially a telescope
whose field of view is synchronized with the scanning beam by the scanning mechanism. It
directs the reflected laser radiation onto a photosensitive detector diode, generating a electric

signal (at point X of figure 8.1) which is modulated by the amplitude and frequency of the
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Figure 8.1: Simplified block diagram of the ERIM/USPS 3D scanner (from Configuration de-
scription for ERIM/USPS range sensor - dynamic and static modes, ERIM, Ann
Arbor, Michigan, 1989.)

reflected radiation. The phase difference between the sinusoidal component (at 700 MHz in
static mode) of the reflected signal and the modulating signal of the incident beam (which serves
as the reference signal) is thus a function of the distance covered by the laser beam to the target
point. The Digital Phase Detector measures the time difference between the positive-going zero-
crossing of the reference signal and that of the reference signal, generating a 12-bit digital range
measure. The circuitry beginning with the preamplifier B in the figure extracts a measure of the
reflectivity of the target surface. This will not be discussed as the reflectance data are not used.
Phase Measurement

The time taken for the scanning beam to make the round trip from the scanner to the target
and back is given by:

At = 2-§sec3.

where R is the distance between the scanner and the target and c is the speed of light in air

(1.1807 x 10! inches/second at 15° and 76 cm Hg) — see figure 8.2. This yields a phase shift of

Ad=2nfAt = 4w%radians (8.1)
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Figure 8.2: Phase relation between the reference signal and the received signal (from Configu-
ration description for ERIM/USPS range sensor — dynamic and static modes, ERIM,
Ann Arbor, Michigan, 1989.)

where f is the modulation frcq'uency in hertz.
Ambiguity Interval
In equation 8.1, A¢ is periodic on 2r. When the phase difference between the reference and
reflected laser signals is coincident, the phase shift is zero. This occurs at integral intervals of
27 radians. This constitutes the ambiguity interval of the sensor which is given by substituting
A¢ = 27 into equation 8.1, yielding:
c

R=15 (8.2)

At a modulating frequency of 700 MHz, the ambiguity interval is

_ 11807 x 10'°
~ 2x 700 x 108

= 8.434:n.
The range readings, hence, wrap around at intervals of 8.434 in. (see figure 8.3).

According to the specification detailed thus far, the sensor should have a range resolution
of 8.434/2!% = 2.06 x 10~2 inches. In practice, though, the instabilities in the radio-frequency

circuitry and other noise restrict current capability of the sensor to an effective eight bits of useful

range information.
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Figure 8.3: The digital phase detector response showing the sensor’s range ambiguity interval

(from Configuration description for ERIM/USPS range sensor — dynamic and static
modes, ERIM, Ann Arbor, Michigan, 1989.)

Sensor Geometry

In static mode, the ERIM/USPS scanner employs a scanning regimen which performs 320
sweeps (line scans) across the target area. During each sweep 320 readings are taken, yielding
a 320x320 range image. This covers volume of 8.434 inches x 35° x 35° at a 32 inch stand-
off (see figure 8.4). The table detailing the ERIM/USPS scanner’s static mode pafamctcrs is
reproduced in table 8.1.

The horizontal line scan is generated by a rotating 8-sided polygonal mirror and the vertical
scan is produced by use of nodding mirror (see figure 8.5).

We now reproduce the equations for calculating Cartesian x-y-z data from the raw range data

from [70]. Given the sensed distance from the nodding mirror to the target R, the polygon angle

(reflecting beam angle) 8, and the nodding mirror angle #,, (sec figure 8.6). The ‘true’ polygon '

angle is given by:
_ 8, +39.11

gl
P 2
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Figure 8.4: The field of view of the ERIM/USPS 3D scanner (from Configuration description for
ERIM/USPS range sensor — dynamic and static modes, ERIM, Ann Arbor, Michigan,
1989.)
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Lines per image

320

Pixels per line

320

Beginning nod angle

-17.8797° £ 0.5° -

Nodding angle increment | 0.100448°
Beginning polygon angle | -14.76° £+ 0.5°
Polygon angle increment | 0.09°

Height above table

32.3542 £+ 0.25inches

Inches per range count 8.434/4096
Nadir line 164

Nadir pixel 180

Constant offset 127, 127, 127

N.B. The height of the sensor is calculated from nadir, where the beam has the shortest distance
to the table. Transformed data is still ordered as it was scanned: the pixels in each scanline of
increasing polygon angle and the scanlines in each image of increasing nodding mirror angle.
Constant offsets were added to insure that all data were positive.

Table 8.1: Parameters of the ERIM/USPS 3D laser range scanner (from Configuration descrip-

tion for ERIM/USPS range sensor — dynamic and static modes, ERIM, Ann Arbor,
Michigan, 1989.)

TN

DR



163

USPS SCANNER OPTICAL ARRANGEMENT

ROTATING POLYGONAL MIRROR

= | _— RECEIVE LENS (2)

NODOING MIRROR L
/ RECEIVE FILTER (2)

MOTOR

DICHR
|~ DICHROIC BEAMSPLITTER

4

/

NOOOING MIRROR

Figure 8.5: The optical arrangement of the ERIM/USPS 3D scanner (from Configuration descrip-
tion for ERIM/USPS range sensor — dynamic and static modes, ERIM, Ann Arbor,
Michigan, 1989.)
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PCLYGON AXIS

POLYGON

NODDING MIRROR AXIS

Sp = POLYGON ANGLE
9y = NODDING MIRROR ANGLE

320 Pixels

320 Pixels

Figure 8.6: Geometric model for extracting Cartesian x-y-z data from a range image. (from
Configuration description for ERIM/USPS range sensor — dynamic and static modes,
ERIM, Ann Arbor, Michigan, 1989.)
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The coordinates of the beam on the polygon are:

L4176 _ o _3.141
tan(o0-96,) ' COS(8,)
X, = 1+ 0813

fan(90-4,)

Y, = 0813X,-1.4176
The Y-coordinate of the beam on the nodding mirror is given by:
Y, = (7.5~ X;)tan(8,) + Y,

The Cartesian coordinates of the target point (X7, Y, Z1) are given by:

Xt = Rcos(8,)sin(6y)
Yr = Rsin(6,)+Y,
Zr = Rcos(6,)cos(8,) (8.3)

The Zr values are subtracted from a constant offset to obtain a ‘height’ reading.

8.1.2 Computing Architecture

Three computers were utilized in the work. The ERIM High-Speed Cytocomputer [69] drives
the ERIM/USPS scanner and extracts images in the raw-sensor format. A Silicon Graphics
workstation serves both as the three-dimensional display engine and the Unix host, on which
most of the numeric computation takes place. A Symbolics Lisp workstation serves as the
hypothesis generation engine. Most of the two-dimensional region-based 'imagc processing and
display operations are also implemented on the Symbolics workstation.

During hypothesis generation and testing, the Symbolics workstation spawns a task on the
Silicon Graphics workstation via a Telnet pipe. This pipe allows processes on the Symbolics
machine to activate telnet sessions on other machines. From the Silicon Graphics end of the
pipe, all that the operating system sees is a telnet session. The Symbolics end of the pipe is an

object which takes input strings and waits for one of a set of events (retumn sub-strings from the



166

Unix station). Procedures (which include reading the return stream, executing code etc.) may be
attached to the return events. The main task performed on the Silicon Graphics workstation in this

mode is the fitting of three-dimensional functions to specified regions of the three-dimensional

imagery.

8.1.3 Software Tools

The software tools employed in the course of the experiments are:

e Range-angle-angle to x-y-z processing software — This is a C program which transforms
the raw sensor image in native sensor coordinates to Cartesian x-y-z coordinates. This
program implements the transformation of equation 8.3. The raw sensor data takes the
form of two byte-arrays (high and low range bytes) and the output generated are six byte-
arrays (z, ¥, 2 high and low byte). The resulting image scale is 0.001 inch per range count.
The three pairs of images are registered such that for an image coordinate pair (¢, 5), the

corresponding three-dimensional point is

(0.001(256HI-X(z,7) + LO-X(1, 7)),
0.001(256HI-Y (i, j) + LO-Y(4,f)),

0.001(256H1-2(i, j) + LO-Z(i,§)))

where HI-X and LO-X, HI-Y and LO-Y, and HI-Z and LO-Z are the high and low z, y and

z byte arrays respectively.

o Besl/Jain variable order segmenter — This is the set of C programs implemented by Paul

Besl to perform the segmentation algorithms(22, 25, 26] described in section 4.2.

o Variable order segmentation output to Lisp translation — This is a C program that translates
the output of the previous program into a run-length region-based Lisp descriptor. An
example of the output is as follows:

(defregion
(type Biquartic)

F e



167

(state 4)
{coefficients 2694628.250000 -6355.307129 -72538.210538
93.375771 38.125397 741.379578
-0.417259 -0.433377 -0.073706
-3.402546 0.000272 0.001246
0.000571 0.000113 0.005910)
(area 428)
(top-left 62 134)
{(bottom-right 101 149)
(runs
(134 76 81) (135 73 87) (136 62 64) (136 73 86) (137 62 ¢&4)
(137 67 83) (137 95 101) (138 63 64) (138 67 83) (138 95 101)
(139 63 87) (139 95 101) (140 64 88) (140 92 92) (140 394 101)
(141 64 101) (142 63 100) (143 63 100) (144 65 99) (145 65 98)
(146 65 95) (147 69 94) (148 70 90) (149 74 75) (149 79 81)
(149 84 86) (149 89 50)))

The descriptor details the order of polynomial fit performed, the coefficients obtained from
the fitting, the area (in pixels) of the region in the image, the right rectangular bounding
box of the region (in terms of the top-left and bottom-right coordinates), and the (row start-
column end-column) description of the run-length regions. All the C and Lisp programs

are capable of reading this data format.

Lisp-based hypothesis engine — This is the bulk of the code written in the course of this
work. The entire system is object-oriented using Symbolics Lisp Flavors. Each surface
is an object and all the algorithms described in this thesis not implemented in the C code

described in this section are implemented in Lisp on the Symbolics.

C program for remote fitting — This is an interactive C program which takes as input
region descriptors from the standard Unix input. It fits these regions as specified (e.g. “fit
a biquadratic surface to a particular region in an x-y-z image set”) and reports the results
at the standard Unix output. This program is invoked in a telnet session on the Silicon
Graphics workstation from the Symbolics Lisp workstation using a Telnet pipe described _
earlier in this chapter. The numeric fitting routines from the Numerical Recipes Library
by Press et. al[140] were modified to operate on bivariate functions for this program.
The objects which this program is capable of fitting are: polynomial surface up to and

including the fourth order (biquartics), cylinders and straight lines in three dimensional
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space. Singular value decomposition is employed for the polynomial and line fits and
cylinders are fitted using the Levenberg-Marquard: method for parameter estimation of

non-linear forms.

o C program for scene regeneration — This program takes Lisp region descriptor files gen-
erated either by the C fitting program or the Lisp programs and produces x-y-z high and

low byte three-dimensional images for display purposes.

o Graphics display/plotting program — The three dimensional perspective images in this dis-
‘sertation are generated by a Silicon Graphics C program which plots the three-dimensional
x-y-z surfaces to the Silicon Graphics screen. It assumes all adjacent data points to be con-
nected as a surface and connects them to form surfaces. The screen images were oriented
by hand and the screen buffers were saved as the byte images which appear in this chapter.
The two-dimensional region-images were generated from state-labelled byte-images by a

hatching program.

8.2 Experimental Sequence

This section overviews the sequence of experiments performed in the course of this work in
two parts. The sequence in which the processing took place will be discussed followed by an

overview of the data-sets processed.

8.2.1 Sequence of Processing

The processing took place in the sequence which conforms to the sequence of abstraction

discussed in section 3.4 and diagrammed in figure 3.4. The sequence is as follows:

1. The ERIM/USPS scanner was run and the resulting range images were processed to obtain

the Cartesian x-y-z image arrays.
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2. The upper eight bits of the two-byte = image were extracted to form a byte-image. This
is the input data format to the variable-order segmentation code described earlier. The
output of this program is a set of smooth surface patches along with the coefficients of the
polynomial surfaces which were fit to the patches. (The ERIM/ITA was already in byte-
image format and were processed as-is). The patches were then translated to Lisp-form

region descriptors.

3. The Lisp-form region descriptors were transferred to the Symbolics for the hypothesis
generation and verification process to identify the geometric forms represenied by the
regions. The first computation performed in this process was the extraction of the Gaussian

and mean curvature-based signatures from the polynomial descriptors as discussed.
4. Extraction of planar surfaces

e If entire region has a ‘FLAT" curvature signature, a plane surface was fitted to the

three-dimensional data.

o If not, the split-merge operation to extract planar surfaces was employed.
5. Extraction of cylindrical surfaces

o If the surface satisfied the initial curvature-based analysis as cylindrical
(a) A biquadratic surface was fitted to the three-dimensional data for cylinder pa-
rameter hypothesis
(b) If the biquadratic fit satisfied the ‘Cylindemness’ test, the non-linear cylinder fit
was performed on to the surface.
o If the surface failed the initial curvature-based analysis as cylindrical or if a bi--
quadratic fit to the surface failed the ‘Cylindemness’ test,
(a) The split-merge operation to extract cylindrical surfaces one at the time (by

performing biquadratic fits) was performed.
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(b) The cylinder parameters were estimated from the coefficients of the biquadratic

surface.

(c) The non-linear cylinder fit was performed on the three-dimensional data

8.2.2 Progression of Difficulty

A set of experiments designed along a progression of increasing difficulty was performed.

These are listed here and described in greater detail in the next section.

1. Curvature signature extraction of angle-angle-range range imagery of unknown x-y-z geom-

etry. Two images from a library of ERIM/ITA were processed to obtain smooth polynomial
surface patches and Gaussian and mean surface curvature signatures. This demonstrates
the robustness of these algorithms for images for which a true Cartesian transformation is

not available. The images were those of:

(a) a coffee cup
(b) a space shuttle model
. Synthetic oriented cylinder images — In this set of experiments, biquadratic surfaces are

fitted to synthetically generated oriented cylinders to gauge the accuracy of the estimation

of the axis projection of the cylinders from the polynomial coefficients.

. Image of blocks — This is an ERIM/USPS scanner image of a collection of block (all the

surfaces are planar).

. Image of a soft drink can — This is an ERIM/USPS scanner image of a soft drink can

against a flat background.

. Image of cylinders — This is an ERIM/USPS scanner image of two cylindrical objects (a

cylinder and a soft drink can).

LN

NI
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6. Image of blocks and cylinders - This is an ERIM/USPS scanner image of a mixture of

blocks and cylindrical objects.

7. Image of a chamfered plane — This is an ERIM/USPS scanner image of an surface made up
of a plane merging smoothly into a curved chamfer. To extract the parametric description

of the plane, the merge-split algorithm for planar surface recovery was applied.

8. Image of a bent pipe elbow — This is an ERIM/USPS scanner image of a bent fiberglass
pipe comprising two straight cylindrical pipe segments merging together with a gradual
135° bend. To extract the parametric description of the two cylinders, the merge-split
algorithm for cylindrical surface recovery was applied. The image is much noisier than
the preceding ones because of the fiberglass material is translucent to the laser radiation

and has specular characteristics.

9. Image of a PVC pipe ring — This is an ERIM/USPS scanner image of a ring made up of

four straight PVC pipe segments and four 90° PVC pipe elbows.

8.3 The Experiments

In the following experiments, when Gaussian and mean curvature sign-maps are displayed,

the look-up table shown in figure 8.7 applies.

8.3.1 Curvature signature extraction of angle-angle-range range imagery of unknown x-y-z

geometry.

This is a set of two experiments in which the Gaussian and mean curvature sign-maps were
computed from images in the ERIM/ITA scanner’s native coordinate system. Comparisons are
made between the curvature sign-maps computed using the 7 x 7 kemel digital differentiation
operators described in section 4.3.3 and the computation obtained from analytical computation

using polynomial descriptors obtained by variable-order segmentation.
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Figure 8.7: Look-up table for Gaussian and mean curvature sign-map displays

This demonstrates the assertion that sense can be made out of the curvature sign maps which
are computed on faithful smooth surface fits on images. This is true even when the images are
in the native coordinate system of a scanner (which is conformally warped with respect to the

scene’s Cartesian dimensions).

Coffee cup

Figure 8.8 shows the 128 x 128 ERIM/ITA scanner image of the coffee cup. The display
color map was randomized around to accentuate the elevation contours.

Figure 8.9 shows the curvature sign-maps computed using the 7 x 7 kemel operator. Although
the cylindrical surface of the coffee cup was by and large labelled as a RIDGE region, the labelling
is very noisy. Furthermore, as will be evident later, this was the best segmentation result obtained
by the kemel operators among all the images on which the algorithm was run.

Figure 8.10 shows the curvature sign-maps computed from the polynomial descriptors ob-
tained by variable-order segmentation. As discussed, the main cylindrical face of the cup was

segmented into a central RIDGE region flanked by FLAT regions. This constitutes the curvature
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Figure 8.9: Curvature sign-map of the coffee cup obtained using kemel operators
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Figure 8.10: Curvature sign-map of the coffee cup computed from the polynomial descriptors
extracted by variable-order segmentation

sign-map signature of such surfaces. The far-side of the lip of the cup was labelled as RIDGE
and the inside of the cup was segmented into a VALLEY region flanked by FLAT regions. At
the boundary between the RIDGE region describing the lip of the cup and the VALLEY region
inside, was labelled as FLAT (as would be expected). The background plane was greyed (not

hatched) to make it easier to see the labelling on the cup.

Space shuttle model

Figure 8.11 shows the 200 x 200 ERIM/ITA scanner image of a model of the space shuttle

with the background plane removed. As before, a randomized display color map was used.

Figure 8.12 shows the curvature sign-maps computed using the 7 x 7 kemel operators. It

is difficult to make sense of the labelling generated. No planar region, for example was found
on the wings or the tail.' The digital noise made the kemel-based computation of the surface

derivatives unstable.

I [

ey
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Figure 8.11: ERIM/ITA scanner image of a model of the space shuttle

Figure 8.12: Curvature sign-map of the space shuttle model obtained using kemel operators
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Figure 8.13: Cur.vaturc sign-map of the space shuttle model obtained from the polynomial de-
scriptors extracted by variable-order segmentation

Figure 8.13 shows the curvature sign-maps computed from the polynomial descriptors ob-
tained by variable-order segmentation. As can be seen, both wings and the tail were labelled as
FLAT. Both engines were labelled as RIDGE flanked by FLAT regions, and the main portion of
the fuselage was correctly labelled as RIDGE. The trough in front of the tail was identified as

FLAT, and the boundary region between the tail and the engine was labelled as VALLEY.

8.3.2 Synthetic oriented cylinder images

This is a set of two experiments involving synthetically generated cylinders. The purpose
of these experiments was to verify the reliability of the cylinder-axis estimates generated by
biquadratic functions fitted to the data. To test if there is some comer of the p@eter space for
which the estimation fails, the cylinders were generated in an assortment of orientations.

In the first experiment, horizontal cylinders of radius 2.5 inches were generated at intervals
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of 7 /18 radians (10°). ﬁicjﬁédrau'c surfaces were fitted to the 'cgflindcrs and the orientation of
the cylinder axes were estimated from the biquadratic coefficients. In table 8.2, the angles of
rotation at which the images were generated were tabulated against the estimated angles and the
difference between the angles. Even though the images were created with 10% Gaussian noise
content, the largest estimation error was 0.35° at an orientation of 90°. Apart from the 90° and
—90° orientations, the average absolute error was 0.0061°.

In the second synthetic images experiment, tilted cylinders of radius 2.5 inches were
generated at orientations (f) of —50°, —30°, 30° and 60°. The cylinders were tilted at
é = —50°,-30°30°,50° from the horizontal plane. Gaussian noise of 10% was added to
the images. As before, biquadratic surfaces were fitted to the cylinders and the orientation of the
cylinder axes were estimated from the biquadratic coefficients. In table 8.3, the angle of rotation
at which the images were generated are tabulated against the estimated angles, the difference
between the angles and the angles of tilt. The average absolute estimation error for the entire set
was 0.0103°. The average absolute estimation error for the + 30° tilted cylinders was 0.007°,
and that for the + 50° tilted cylinders was 0.0135°. Although the errors for the tilted cylinders
were higher than those for horizontal cylinders, and the average error for cylinders tilted at + 50°
was nearly double that for cylinders tilted at £ 30°, the errors in each case was still much smaller

than that which would be expected with real sensing errors.

8.3.3 Image of blocks

In this experiment, a collection of four blocks (card-board boxes and wooden blocks) were
imaged and processed to extract the surfaces and their orientations. Figure 8.14 is a rendered
perspective image of the three-dimensional data obtained from the ERIM/USPS scanner. Notice
how noisy the data is especially at the edges of the blocks. As discussed in chapter III, two

kinds of errors are evident at these edges. First there are the many obvious spikes which result
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-50.000000

-89.668674

0.331326

-80.001886

-80.025356

-0.023470

-70.003773

-70.000170

0.003602

-59.977011

-59.981953

-0.004942

-50.007545

-50.008177

-0.000632

-39.992455

-39.997938

-0.005483

-30.022989

-30.019435

0.003554

-19.996227

-19.996967

-0.000739

-9.998114

-10.000909

-0.002795

0.000000

0.000000

0.000000

9.998114

9.975731

-0.022382

19.996227

20.000198

0.003971

30.022989

30.020099

-0.0028%0

39.992455

39.992506

0.000052

50.007545

50.003306

-0.004240

59.999929

60.011458

0.011528

69.998043

69.987020

-0.011024

80.001886

80.003507

0.002021

90.000000

89.649351

-0.350649

Table 8.2: Cylinder axis estimation of synthetically generated oriented horizontal cylinders
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] Bestimate Bestimate — 0 | &
-50.007545 | -50.009619 | -0.002073 -30
-49.994922 | 0.012623 -50
-50.019174 | -0.011629 | 30
-50.003515 | 0.004030 50
-30.022989 | -30.015716 | 0.007273 -30
-30.050071 | -0.027082 | -50
-30.025689 | -0.002700 | 30
-30.012940 | 0.010049 50
30.022989 | 30.007681 -0.0153:08 -30
30.015209 | -0.007780 | -50
30.019095 | -0.003894 | 30
30.009739 | -0.013250 | 50
59.999929 | 60.009064 | 0.009135 -30
59.984119 | -0.015810 | -50
59.004112 | 0.004182 30
60.017500 | 0.017571 50

Table 8.3: Cylinder axis estimation of synthetically generated oriented tilted cylinders
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Figure 8.14: A rendered perspective view of the three-dimensional image of the blocks

from beam scatter to the sharp edges (see figure 3.1) and second, there is the averaging noise
which makes the data at the edges look like corrugated slopes (see figure 3.2).

Figure 8.15 shows the curvature sign-maps computed using the 7 x 7 kemnel operators. Again,
the digital noise rendered the kemel-based computation of the surface derivatives ineffectual. No
planar regions, for example were found on the block surfaces.

Figure 8.16 shows the smooth regions found by the variable-order segmentation program
and figure 8.17 shows the order of the bivariate polynomials fitted to the various surfaces.

Figure 8.18 shows the curvature sign-maps computed from the polynomial descriptors ob-
tained by variable-order segmentation. As can be seen, the majority of the block faces were
labelled as FLAT. The little block on the left was erroneously labelled as RIDGE because the
region was too small to obtain an extended region. The edges of one of the block faces near the
top were labelled as a FLAT region flanked by a RIDGE and a VALLEY region. Although the
background was found to be FLAT it was blacked-out in figure 8.18 to make it easier to see the

blocks.
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Figure 8.15: Curvature sign
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Figure 8.16: Labelled image of smooth surfaces found in the blocks image by the variable-order

segmentation program
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Figure 8.17: The bivariate polynomials fitted to the smooth surfaces in the blocks image by the
variable-order segmentation program. KEY: Horizontal lines-Planar; Vertical
lines-Bicubic; Crossed ‘+’ hatching-Biquartic

Figure 8.18: Curvature sign-map of the blocks image obtained from the polynomial descriptors
extracted by variable-order segmentation

(iRl
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Figure 8.19: A rendered perspective view of the three-dimensional surfaces found in the blocks
image

Figure 8.19 is a rendered perspective image of the three-dimensional surfaces found in the
blocks image after the hypothesis-verification operation. The angle between the faces of the
tilted box at the top of the image was found to be 92.5°. The areas of the surfaces in the image
were 1448 and 3528 pixels. The angle between the faces of the tilted box at the bottom of the
image was found to be 93.2°. The areas of the surfaces in the image were 1449 and 555 pixels.
The angles between the background plane (area was 10571 pixels) and the tops of the two boxes
placed squarely on the scanning table were found to be 0.307° (area of box top was 6040 pixels)
and 2.46° (area of box top was 250 pixels). As was expected, the errors were lowcf when the

surfaces had more pixels on which to perform the fitting.

8.3.4 Image of a soft drink can

In this experiment, a soft drink can was imaged and processed. Figure 8.20 is a rendered

perspective image of the three-dimensional data obtained from the ERIM/USPS scanner. Notice
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Figure 8.20: A rendered perspective view of the three-dimensional image of the soft drink can

again that the data is especially noisy at the edges of the can.

Figure 8.21 shows the curvature sign-maps computed using the 7 x 7 kernel operators. Again,
the curvature labellings bear no resemblance to the surfaces one would expect to find. No RIDGE
region, for example, was found on the cylindrical surface of the can and the background plane
was not labelled as FLAT.

Figure 8.22 shows the smooth regions found by the variable-order segmentation program
and figure 8.23 shows the order of the bivariate polynomials fitted to the various surfaces.

Figure 8.24 shows the curvature sign-maps computed from the polynomial descriptors ob-
tained by variable-order segmentation. Once again, the curvature description of the cylindrical
surface of the can (a RIDGE region flanked by FLAT regions) is characteristic of cylindrical
surfaces. The background plane which was found to be FLAT was blacked-out in figure 8.24 to |
make it easier to see the soft drink can.

Figures 8.25 and 8.26 are rendered perspective images of the three-dimensional surfaces found

in the soft drink can image by the hypothesis-verification operation. In figure 8.25, the can is
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map of the image of soft drink can obtained using kemel operators

Figure 8.21: Curvature sign

Figure 8.22: Labelled image of smooth surfaces found in the soft drink can image by the variable-

order segmentation program
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Figure 8.23: The bivariate polynomials fitted to the smooth surfaces in the soft drink can im-
age by the variable-order segmentation program. KEY: Horizontal lines-Planar;
Vertical lines-Bicubic; Crossed ‘+’ hatching-Biquartic
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Figure 8.24: Curvature sign-map of the soft drink can image obtained from the polynomial
descriptors extracted by variable-order segmentation
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Figure 8.25: A rendered perspective view of the three-dimensional surfaces found in the soft
drink can image (the cylinder was approximated by a biquadratic surface)

Figure 8.26: A rendered perspective view of the three-dimensional surfaces found in the soft
drink can image (the can was generated as a true cylindrical surface)
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Figure 8.27: A rendered perspective view of the three-dimensional image of the cylinders

approximated by a biquadratic surface (the companion linear function for cylinders). Although no
appreciable difference can be seen in figure 8.26, the parametric description of the true cylinder
were extracted to generate it. The cylinder axis found is described by ( 8 = 100.65°, ¢ = 26.2°,
¢, = —2.4378 inches, c; = 8.1643 inches) (see figure 6.10). The z intercept of the axis with the
y-z plane ¢, was used because y intercept ¢, approaches infinity as the cylinder becomes parallel

to the y-axis.

8.3.5 Image of cylinders

In this experiment, a pair of cylinders (soft drink can and a lead pipe) in different orientations
were imaged and processed. Figure 8.27 is a rendered perspective image of the three-dimensional
data obtained from the ERIM/USPS scanner. Notice again that the data is especially noisy at the '
edges of discontinuity. 7

Figure 8.28 shows the curvature sign-maps computed using the 7 x 7 kemel operators. Again,

the curvature labellings were fragmented and bear no resemblance to the surfaces one would
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Figure 8.28: Curvature sign-map of the image of cylinders obtained using kernel operators

expect to find. No RIDGE regions, for example, were found on the cylindrical surfaces and the
background plane was not labelled as FLAT.

Figure 8.29 shows the smooth regions found by the variable-order segmentation program
and figure 8.30 shows the order of the bivariate polynomials fitted to the various surfaces.

Figure 8.31 shows the curvature sign-maps computed from the polynomial descriptors ob-
tained by variable-order segmentation. Once again, the curvature description of the cylindrical'
surfaces in the image (a RIDGE region flanked by FLAT regions) are characteristic of cylindrical
surfaces. The background plane which was found to be FLAT was blacked-out in figure 8.31 to
make it easier to see the objects in the scene.

Figures 8.32 and 8.33 are rendered perspective images of the three-dimensional surfaces found
in the cylinders image by the hypothesis-verification operation. In figure 8.32, the cylinders were -
approximated by a biquadratic surface (the companion linear function for cylinders). Figure 8.33,
the parametric description of the true cylinders were extracted to generate the image. Again,

there is no visual difference the two images. The parameters of the cylinder axis (see figure 6.10)
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Figure 8.29: Labelled image of smooth surfaces found in the cylinders image by the variable-

ordér segmentation program
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Figure 8.30: The bivariate polynomials fitted to the smooth surfaces in the cylinders image by the

order segmentation program. KEY: Horizontal lines-Planar; Vertical
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Figure 8.31: Curvature sign-map of the cylinders image obtained from the polynomial descriptors
extracted by variable-order segmentation

Figure 8.32: A rendered perspective view of the three-dimensional surfaces found in the cylinders
image (the cylinders were approximated by biquadratic surfaces)
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Figure 8.33: A rendered perspective view of the three-dimensional surfaces found in the cylinders
image (the cylinders were generated as true cylindrical surfaces)

of the can were found to be (¢ = 100.65°, ¢ = 26.2°, ¢, = —2.4578 inches, c; = 8.1643 inches)
(¢ is the z intercept of the axis with the y-z plane - the y intercept ¢, approaches infinity as the
cylinder is parallel to the y-axis) ; and, those for the lead pipe were (8 = 1.48°, ¢ = —0.467°,

c; = 3.6044 inches, ¢y = 9.735 inches).

8.3.6 Image of blocks and cylinder

In this experiment, a collection of three blocks and a cylindrical lead pipe was imaged and
processed. Two of the blocks are placed one on anotl;er squarely on the scanning table. The
third block was tilted so that two surfaces were visible. Figure 8.34 is a rendered perspective
image of the three-dimensional data obtained from the ERIM/USPS scanner. The usual noise at _
the range discontinuities is again apparent.

Figure 8.35 shows the curvature sign-maps computed using the 7 x 7 kemel operators. Again,

the curvature labellings were of little use for surface recognition. There was no perceptible
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Figure 8.34: A rendered perspective view of the three-dimensional image of the blocks and
cylinder

correlation between the sign-map labels and the surfaces known to be present.

Figure 8.36 shows the smooth regions found by the variable-order segmentation program
and figure 8.37 shows the order of the bivariate polynomials fitted to the various surfaces.

Figure 8.38 shows the curvature sign-maps computed from the polynomial descriptors ob-
tained by variable-order segmentation. Once again, the characteristic curvature signature of the
cylindrical surface (a RIDGE region flanked by FLAT regions) was observed. The surfaces of
the blocks and the background plane were found to be FLAT.

Figures 8.39 and 8.40 are rendered perspective images of the three-dimensional surfaces
found in the blocks/cylinder image by the hypothesis-verification operation. In figure 8.39.' the
cylinder was approximated by a biquadratic surface (the companion linear function for cylinders).
Figure 8.40, the parametric description of the true cylinder was extracted to generate it. Again,
there is no visual difference the two images. The parameters of the cylinder axis (see figure 6.10)

of the can were (6 = 1.39°, ¢ = 0.71°, ¢, = 3.563 inches, ¢, = 13.4989 inches). The angles
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Figure 8.35: Curvature sign-map of the blocks/cylinder image obtained using kemel operators

Figure 8.36: Labelled image of smooth surfaces found in the blocks/cylinder image by the
variable-order segmentation program
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Figure 8.37: The bivariate polynomials fitted to the smooth surfaces in the blocks/cylinder im-
age by the variable-order segmentation program. KEY: Horizontal lines-Planar;
Vertical lines-Bicubic; Crossed ‘+’ hatching-Biquartic

Figure 8.38: Curvature sign-map of the blocks/cylinder image obtained from the polynomial
descriptors extracted by variable-order segmentation
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Figure 8.39: A rendered perspective view of the three-dimensional surfaces found in the
blocks/cylinder image (the cylinder was approximated by a biquadratic surface)

Figure 8.40: A rendered perspective view of the three-dimensional surfaces found in the image
of blocks and a cylinder (the cylinder was generated as a true cylindrical surface)
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Figure 8.41:. A rendered perspective view of the three-dimensional image of the chamfered plane

between the background plane (area was 9502 pixels) and the tops of the two boxes whose bases
are parallel to the scanning t#ble were found to be 0.944° (area of box top was 2280 pixels) and
0.375° (area of box top was 4305 pixels). Again, the errors were lower when the surfaces had
more pixels on which to perform the fitting. The steeper face of the tilted block was too noisy

to make a good planar fit.

8.3.7 Image of a chamfered plane

In this experiment, an aluminum sheet bent to produce a plane chamfering smoothly into a
curved surface was imaged and processed. This is precisely the problem discussed in section 5.8
and shown in figure 5.4. Figure 8.41 is a rendered perspective image of the three-dimensional
data using the ERIM/USPS scanner.

Figure 8.42 shows the curvature sign-maps computed using the 7 x 7 kemel operators. Again,
the curvature labellings were of litle use for surface recognition. There was no perceptible

difference between the labelling of the planar and curved portions of the object.
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Figure 8.42: Curvature sign-map of the chamfered plane image obtained using kemnel operators

Figure 8.43 shows the smooth regions found by the variable-order segmentation program
and figure 8.44 shows the order of the bivariate polynomials fitted to the various surfaces.

Figure 8.45 shows the curvature sign-maps computed from the polynomial descriptors ob-
tained by variable-order segmentation. The planar portion was labelled as FLAT. Most of the
curved surface was correctly labelled as a RIDGE region. A small portion of the curved surface
was erroneously labelled as FLAT.

To separate the plane from the curved chamfer (and so determine its orientation in three-
dimensional space), the split-merge algorithm for plane extraction was applied. As discﬁssed
in section 5.8, the splitting was performed by applying equation 5.6 to generate the like-normal
neighbourhood image shown in figure 8.46.

The surfaces were then merged using the merging algorithm described in section 5.5. The -
resulting segmentation is shown in figure 8.47 in which each surface was labelled with a unique
shade. The small patch at the lower right hand comer could not be fit to the plane because the

original aluminium sheet had a crease at that comer.
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Figure 8.43: Labelled image of smooth surfaces found in the chamfered plane image by the
variable-order segmentation program
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Figure 8.44: The bivariate polynomials fitted to the smooth surfaces in the chamfered plane im-
age by the variable-order segmentation program. KEY: Horizontal lines-Planar;
Crossed ‘+’ hatching-Biquartic
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Figure 8.45: Curvature sign-map of the chamfered plane image obtained from the polynomial
descriptors extracted by variable-order segmentation

Figure 8.46: The like-normal neighbourhood image for the chamfered plane
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Figure 8.48: A rendered perspective view of the three-dimensional surfaces found in the cham-
fered plane image.
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Figure 8.49: A rendered perspective view of the three-dimensional image of the pipe elbow

Figure 8.48 is a rendered perspective image of the three-dimensional surfaces found in the
chamfered plane image by the hypothesis-verification operation. The plane actually grew slightly
into the curved region. This could not be avoided. If the threshold for merging regions was
made too sensitive, the noise in the image would have stopped the region merging before the

entire plane was captured.

8.3.8 Image of a pipe elbow

In this experiment, fiberglass pipe elbow comprising two straight cylindrical pipe segments
merging together with a gradual 135° bend smoothly into a curved surface was imaged and
processed. To extract the parametric description of the two cylinders, the merge-split algorithm
for cylindrical surface recovery described in section 5.9 was applied. Figure 8.49 is a rendered’
perspective image of the three-dimensional data using the ERIM/USPS scanner. The image is
much noisier than the preceding ones because of the fiberglass material is translucent to the laser

radiation and has specular characteristics.
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Figure 8.50: Curvature sign-map of the pipe elbow image obtained using kemel operators

Figure 8.50 shows the curvature sign-maps computed using the 7 x 7 kernel operators. Again,
little can be made of the curvature label thus computed. |

Figure 8.51 shows the smooth regions found by the variable-order segmentation program.
All the surfaces found were approximated by biquartic functions. Figure 8.52 shows a rendered
three-dimensional reconstruction of the surfaces found. Notice that the entire pipe segment was
approximated by one surface, and that the surface is warped (not cylindrical).

Figure 8.53 shows the curvature sign-maps computed from the polynomial descriptors ob-
tained by variable-order segmentation. The curvature description of the straight segments of the
pipe (a RIDGE region flanked by FLAT regions) is characteristic of cylindrical surfaces. At the
inside of the bend, VALLEY and SADDLE VALLEY regions were found. These describe precisely
the types of surface curves actually present. The background plane which was found to be FLAT '
was blacked-out in figure 8.31 to make it easier to see the pipe elbow.

To separate the cylinders and to determine their orientations in three-dimensional space,

the split-merge algorithm for cylinder extraction was employed. As discussed in section 5.9,
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Figure 8.51: Labelled image of smooth surfaces found in the bent pipe segment image by the
variable-order segmentation program

Figure 8.52: The biquartic surfaces fitted to the smooth surfaces in the pipe elbow image by the
variable-order segmentation program.
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Figure 8.53: Curvature sign-map of the pipe elbow image obtained from the polynomial descrip-
tors extracted by variable-order segmentation

the entire elbow was divided into acceleration bands (see figure 5.6). The surfaces were then
merged using the merging algorithm described in section 5.5. The acceleration bands and the
resulting segmentation are shown in figure 8.54.

Figures 8.55 and 8.56 are rendered perspective images of the three-dimensional surfaces
found in the pipe elbow image by the hypothesis-verification operation. In figure 8.55, the cylin-
ders were approximated by a biquadratic surface (the companion linear function for cylinders).
Figure 8.33, the parametric description of the true cylinders were extracted to generate the im-
age. The parameters of the cylinder axes (see figure 6.10) were found to be (6§ = 157.78° or
-22.22°, ¢ = —2.05°, ¢, = —5.268 inches, ¢, = 17.573 inches) and (§ = 23.999°, ¢ = 2.038°%,
c; = 4.482 inches, ¢, = 8.579 inches). This constitutes a bend of 133.78°. This differs from .

the 135° of the actual pipe by 1.22°

8.3.9 Image of PVC pipe ring
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Figure 8.54: The acceleration-band image for the pipe elbow

Figure 8.55: A rendered perspective view of the three-dimensional surfaces found in the pipe
elbow image (the cylinders were approximated by biquadratic surfaces).
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Figure 8.56: A rendered perspective view of the three-dimensional surfaces found in the pipe
elbow image (the cylinders were generated as true cylindrical surfaces).

Figure 8.57: A rendered perspective view of the three-dimensional image of the PVC pipe ring
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Figure 8.58: Curvature sign-map of the PVC pipe ring image obtained using kemel operators

inch diameter pipe segments

1
2

In this experiment, a ring of PVC pipe sections (four straight 1

and four 90° elbows) was imaged and processed. Figure 8.57 is a rendered perspective image of

the three-dimensional data obtained from the ERIM/USPS scanner. The usual noise at the range

discontinuities is again apparent.

Figure 8.58 shows the curvature sign-maps computed using the 7 x 7 kemel operators. Again,

there waw no perceptible correlation between the curvature sign-map labels and the surfaces

known to be present.

Figure 8.59 shows the curvature sign-maps computed from the polynomial descriptors ob-

order segmentation (The version of the variable-order segmentation program

tained by variable

applied throughout the previously described experiments actually failed to segment the image

‘Mexican hat’-like surface. To obtain a

satisfactorily at first — the entire ring was fitted with a

satisfactory segmentation, the image was augmented by a removal of edge points before variable-

order segmentation program was run. The edge points were extracted by a morphological edge

detector). Once again, the characteristic curvature signature of the cylindrical surface (a RIDGE
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Figure 8.59: Curvature sign-map of the PVC pipe ring image obtained from the polynomial
descriptors extracted by variable-order segmentation

region fAanked by FLAT regions) is evident. The background plane was found to be FLAT.
Figures 8.60 and 8.61 are rendered perspective images of the three-dimensional surfaces
found in the PVC pipe ring image by the hypothesis-verification operation. In figure 8.60,
the cylinders were approximated by biquadratic surfaces (the companion linear function for
cylinders). Figure 8.61, the parametric description of the true cylinders was extracted to generate
them. Again, there is no visual difference the two images. The parameters of the cylinder axes

(see figure 6.10) of the can were:

Segment | 4 ¢ ¢, (inches) | ¢, or ¢, (inches)
Top 0.538° -0.991° | 5.511 7.43(cy)

Right 90.117° | —0.3818° | 5.063 15.034(c;)
Bottom | 0.25° | -0.991° | 5.386 15.64(c,)

Left 90.0344° | —0.971° | 5.508 7.086(c;)

For the horizontal pipe segments,

the z intercept of the cylinder axis with the y-z plane (cz)
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Figure 8.60: A rendered perspective view of the three-dimensional surfaces found in the PVC
pipe ring image (the straight cylindrical segments were approximated by biquadratic
surfaces, and the ‘comers’ by bicubic patches)

Figure 8.61: A rendered perspective view of the three-dimensional surfaces found in the image
of blocks and a cylinder (the straight cylindrical segments were generated as true
cylindrical surfaces)
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was computed and for the ;/énical pipe segments, the y imercééi Acy was computed.

As can be seen, the error in x-y orientation () was no more than 0.5°.



CHAPTER IX

CONCLUSIONS

When work began on this thesis, it was the author’s purpose to investigate issues pertaining
to three-dimensional object recognition and pose determination per se. Simply put, the intent
was to develop algorithms which would permit a robot system equipped with a laser range
imaging system to recognize and locate an object and to perform an operation such as drilling
a hole in it. It was thought that the surface descriptors generated by work such as Besl and
Jain’s variable-order segmentation algorithm (22, 25, 26] would provide a platform for such an
endeavour. Such optimism was quickly proven wrong. Much needed to be done to shore up
the foundations before the house of recognition and location may be erected. Among them were
the abilities to bridge the gap between low and high level vision, to make reliable hypotheses
regarding the scene, and to cxtmci the parametric descriptions of the constructed geometric forms
of which the target objects constitute. The work done on this thesis addresses these issues.

We shall conclude this work by summarizing the findings of the work of this thesis and to

outline the research which remains to solve the original problem.

9.1 Summary

An abstraction-based paradigm for organizing perceptual tasks was developed and described
in chapter I. It provides a means to span the crevasse between low and high level vision by

- an explicit general to specific refinement process. Within this paradigm, the task of specifying
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what is in a scene becomes one of making stronger and stronger assumptions about what is in
the image. This strategy was applied to the processing of laser range imagery as outlined in the
block diagram of figure 3.4.

Within the purview of abstraction-based refinement an initial symbolic description of the
scene is necessary. The first such description was obtained in the form of smooth regions which
could be approximated by bivariate polynomial surfaces. These were generated using Besl and
Jain’s variable-order segmentation program applying only the assumption that smooth contiguous
regions could be modelled by bivariate polynomials.

A method for obtaining robust curvature-based surface labelling was demonstrated for the
next step in the refinement process. While such differential geometry-based description has been
proposed in the literature, the computation of these features directly from the imagery by kemel-
type digital differentiation operators proved unstable. In the experiments presented, the Gaussian
and mean curvature sign-map was computed on the polynomial description obtained in the
previous abstraction process. As long as the region fits were faithful to the data, the information
through the extended surface could be drawn upon to support the curvature computation. This
was discussed in section 4.3 (section 4.3.4 in particular).

Once a hypothesis can be made as to the surfaces of construction present in the scene, these
have to be verified and the orienting parameters have to be extracted. The majority of object
recognition work found in the literature operate on polyhedra. This is because planes are the only
surfaces which satisfy two criteria. They describe precisely the surface of construction and their
algebraic description is linear in terms of their orienting parameters. The first criterion permits
the recovery of the object centered coordinate system and the second makes their computation -
possible. Most constructed forms, however, are non-linear in terms of their orienting parameters.
Numeric methods for the extraction of these parameters require good estimates of the parameter

values. This ‘chicken and egg’ problem was approached using the concept of companion linear
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forms. These forms which are linear in their orienting parameters approximate their non-linear
counterparts and are capable of estimating their orienting parameters. Companion linear forms
are thus useful both for the detection and pose determination constructed forms.

A study was done on the application of the biquadratic form as the companion linear form
for cylinders in sections 4.4 and 6.1. These estimates were then used in a non-linear fitting
phase to determine the orienting parameters of the cylinders. The non-linear fitting was done
with an implementation of the Levenberg-Marquardt algorithm. Results show that the parametric
estimation from biquadratic fits were robust and accurate. In tests with synthetically generated
cylinders (whose orientations are well known), the estimation was accurate within two hundredth
of a degree for all orientations. In the experiments with the image of the fiberglass pipe elbow
which was very noisy, the angle computed for the bend was off by 1.22°, and in the PVC pipe
ring image, the angular errors did not exceed 0.5°.

It was shown, in chapter V, that ALL region split-merge operations are based upon hypotheses
of the objects being constituted in the merging process. The criteria for region splitting and
merging were defined. A hypothesis (assumption) guided split-merge algorithm was developed
for determining the pose of smoothly merging planes and cylinders. For planes which merge
smoothly into curved surfaces, like-normal neighbourhoods were advanced as a means of splitting
the smooth surface containing the plane. The splitted regions were then merged to extract the
plane, For cylinders which meld smoothly into other surfaces along their axes, acceleration
bands were applied for region splitting and the biquadratic function was used to perform the
region merging. Both operations were demonstrated in the experiments presented.

A fast algorithm for the extraction of the boundaries of run-length regions was developed
(chapter VII). This ﬁnite'-state machine algorithm takes advantage of the run list topology and
boundary direction constraints implicit in the run-length encoding of the region. It extracts the

external boundary of the region and the boundaries of all the holes in the region.
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As mentioned in section 3.4, the laser range data (after transformation to three-dimensional
Cartesian coordinates) are used in every stage of the abstraction process. As more and more
specific hypotheses are imposed, the system remains data-bound. The hypotheses are always
tested against the original data, and the extraction of the parametric description of the constructed

geometric form is achieved by fitting the parametric models to the data.

9.2 Directions for Future Research

The measure of the success and relevance of this work is the extent to which we are closer
to being able to recognize, locate and perform an operation on an industrial work piece (like
drilling a specified hole). It has uncovered some areas which require more research before the
task in question can be accomplished.

An architecture needs to be designed to implement the abstraction-based recognition and
pose dcterminatic‘)n paradigm. A system which will recognize and determine the pose of objects
with cylindrical and planar surfaces givcn laser imagery could be built directly on the work of
this thesis. An altemnate hierarchy of abstraction for recognition in intensity images could also
be defined. The same architecture should operate on such a hierarchy.

More work needs to be done on linear-companion forms to cover all constructed geometric
surfaces like cones, spheres etc. A promising set of functions for this task is superquadrics
because of their ability to describe arbitrarily complex regular shapes. A cone, for example,
could be approximated by one end of a very eccentric ellipsoid. The axis of the cone would be
colinear with one principal axis of such an ellipsoid and the eccentricity of the ellipsoid would
provide an estimation of the angle of taper of the cone.

In this work, the variable-order segmentation excluded most of the noise spikes (outliers),
permitting the parameter estimation to work only on the ‘good’ data. The sensor’s noise char-
acteristics were not otherwise handled. In the ERIM/USPS scanner, for example, the surfaces

imaged appear to possess a slight corrugation which can be seen in the images in chapter VIIL
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This arises from the scanning regimen of the scanner. It was difficult to determine a least-squares
threshold which would allow a region grow in a direction parallel to the corrugation and stop
quickly when the surface really bends. This identifies the application of robust methods and the
application of sensor noise models in the fitting process necessary for the determination of the
orienting parameters of the visible surfaces.

Work also needs to be done in the fine-tuning regions at boundaries. In the example of the
plane merging into a curved chamfer (see figure 8.55), the planar surface grew slightly into the
curved chamfer. Surface melding functions may hide this error from the viewer, but such fixes
are only cosmetic. They will not remove the errors in the estimation of the orientation of the
plane introduced by the errant data. Better noise models will ameliorate this problem, but not
solve it completely. One approach, perhaps, may be a ‘retraction’ procedure. The initial region
growing could be aggressive to allow the surface to grow over the noisy data. Once the surface
stops growing, overshoots must be expected. A fine tuning process may retract the surface from
its boundaries using finer thresholds. This constitutes kind of a scale space approach in x?
threshold space.

Given a model of the work piece in terms of its constructed geometric surfaces, the algorithms
developed in this thesis will extract the orienting parametric description of each surface. In order
to determine the affine transformation of the entire object, methods for conflict resolution must
be applied. Such methods must be able to reason with both numeric and symbolic information.
For example, the significance ascribed to the orienting parameters of planes in an image should
depend on the region sizes occupied by the planes and the degree to which it is oblique to the
viewing direction. The estimation of the angle of orientation of a cylinder axis in the plane
perpendicular to the viewing direction is more precise than the estimation of the angle of tilt of
the axis away from the plane. Possible approaches for the solution of this problem are constraint-

based methods, extended Hough transforms and neural networks. These techniques may then be
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applied in a complete object recognition and pose determination system.

Finally, the generation of recognition models (for use in a recognition system) from CAD
descriptions of objects is an area where future research is needed. Such models should provide a
recognition system with the types of surfaces visible and the curvature signatures one may expect.
Since surface reflectivity characteristics (e.g. specularity) affect the imaging noise, methods must

be investigated to incorporate these into the models.



BIBLIOGRAPHY

218



219

BIBLIOGRAPHY

[1] Aloimonos, John (Yannis), “Visual shape computation,” Proceedings of the IEEE, Vol. 76,
No. 8, pp. 899-916, August 1988.

[2] Aloimonos, John, “Shape from texture,” Biological Cybernetics, Vol. 58, pp. 345-360,
1688.

[3] Altschuler, Martin D., Posdamer, Jeffrey L., Frieder, Gideon, Altschuler, Bruce R., and
Taboada, John, “The numerical stereo camera,” SP/E 3-D Machine Perception, Vol. 283,
pp. 15-24, 1981

[4] Andress, K.M., and Kak, A.C., “Evidence accumulation & flow of control in a hierarchical
spatial reasoning system,” A/ Magazine, American Association for Antificial Intelligence,
pp. 75-94, Summer 1988.

[5] Archibald, C., Rioux, M., “WITNESS: A system for object recognition using range images,”
National Research Council Canada, Division of Electrical Engineering, ERB-986, NRCC
No. 25588, January 1986.

(6] Archibald, Colin, and Merritt, Cathy, “Pose determination of known objects from sparse
range images,” Proceedings of the 2nd Conference on Intelligent Autonomous Systems, Am-
sterdam, The Netherlands, December 1989.

[7] Asada, H, and Brady, M., “A curvature primal sketch,” Proc. [IEEE Workshop on Computer
Vision: Representation and Control, Annapolis, Md, pp. 8-17, May 1984.

[8] Asada, Minoru, Ichikawa, Hidetoshi, and Tsuji, Saburo, “Determining surface orientation
by projecting a stripe pattem,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, Vol. 10, No. 5, pp. 749-754, September 1988.

[9] Augusteijn, Marike F., and Dyer, Charles R. “Recognition and recovery of three-dimensional
orientation of planar point pattems,” Computer Vision, Graphics, and Image Processing, Vol.
36, pp. 76-99, 1986.

[10] Bajcsy, Ruzena, “Three-dimensional scene analysis,” Proceedings of the Sth International -
Joint Conference on Pattern Recognition, Miami Florida, pp. 1064-1074, 1980

[11] Baker, H.H., and Binford, T.O., “Depth from edge and intensity based stereo,” International
Joint Conference on Artificial Intelligence, Vancouver, B.C., Vol. 6, pp. 349-387, 1981.

[12] Ballard, Dana H., and Sabbah, Daniel, “Viewer independent shape recognition,” /EEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-5, No. 6, pp. 653-659,
November, 1983.



220

(13] Bamnard, Stephen T. and Fischler, Martin A., “Computational stereo,” ACM Computer Sur-
veys, Vol. 14, No. 4, pp. 553-572, December 1982.

[14] Bamard, S.T., “A stochastic approach to stereo vision,” American Association of Artificial
Intelligence, pp. 676680, 1986.

(15] Barrow H.G. and Tenenbaum, J.M., “Interpreting line drawings as three dimensional sur-
faces,” Artificial Intelligence, Vol. 17, pp. 75-117, 1981.

(16] Bastuscheck, Marc C., Schonberg, Edith, Schwartz, Jacob T., “Object recognition by 3-
dimensional curve matching,” Technical Report No 203, Robotics Report No. 63, New York
University Dept. of Computer Sciences,, January 1986.

[17] Beaudet, Paul R., “Rotationally invariant image operators,” Proceedings of the 4** Interna-
tional Joint Conference on Pattern Recognition, November 7-10, 1978, Kyoto, Japan.

(18] Bergholm, Fredrik, “Edge focusing,” IEEE Transactions of Pattern Analysis and Machine
Intelligence, Vol. PAMI-9, No. 6, pp. 726-741, November, 1987.

(19] Besl, Paul J., and Jain, Ramesh, “Three-dimensional object recognition,” Computing Sur-
veys, Yol. 17, No. 1, March 1985.

{20] Besl, Paul J., and Jain, Ramesh, “Intrinsic and extrinsic surface characteristics,” Proc. [EEE
Conf. on Computer Vision and Pattern Recognition, pp. 119-123, June 1985

(21] Besl, Paul J,, and Jain, Ramesh, “Range image understanding,” Proc. IEEE Conf. on Com-
puter Vision and Pattern Recognition, pp. 430-449, June 1985

[22] Besl, Paul J., Surfaces in Early Range Image Understanding, Ph.D. Dissertation, Electr.
Eng. Comp. Sci. Dept. (RSD-TR-10-86), University of Michigan, Ann Arbor, MI (March).
1986.

[23] Besl, Paul J,, and Jain, R.C. 1986. “Invariant surface characteristics for three dimensional
object recognition in range images,” Computer Vision, Graphics, Image Processing , 33, 1
(January), pp. 33-80.

[24] Besl, Paul J,, and R. Jain, “Segmentation through symbolic surface descriptions”, Proc.
{EEE Conf. on Computer Vision and Pattern Recognition, pp. 77-85, June 1986.

[25] Besl, Paul J., Surfaces in Range Image Under&tanding, Springer-Verlag, New York, 1988.

[26] Besl, Paul J., and R. Jain, “Segmentation through variable-order surface fitting”, /EEE
Transactions on Pattern Analysis and Machine Intelligence, 10 No. 2, pp. 167-192, March
1988.

(27] Besl, Paul J., “Range image sensors,” Computer Science Department, General Motors Re-

search Laboratories, Warren, Michigan, GMR-6090, March 8, 1988.

(28] Bhanu, Bir, “Shape matching of two-dimensional occluded objects,” Proceedings of the 6th
International Conference on Pattern Recognition, Munich, West Germany, IAPR and IEEE,
New York, pp. 742-744, October 19-22 1982.



221

[29] Bhanu, Bir, “Surface representation and shape matching of 3-D objects,” Proceedings of
Pattern Recognition and Image Processing Conference, Las Vegas Nevada, pp. 349-354,
June 1982,

[30] Bhanu, Bir, “Representation and shape matching of 3-D objects,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, IEEE, New York, PAMI-6, No. 3, pp. 340-350,
1984.

{31] Bhanu, B,, Lee, S., Ho, C.C. and Henderson, T., “Range data processing: Representation of
surfaces by edges”, Proceedings of the 8th International Conference on Pattern Recognition,
pp. 236-238, October 1986

[32] Binford, T. O., “Survey 'of model-based image analysis systems,” International Journal of
Robotics Research, Vol. 1, No. 1, pp. 18-64, Spring, 1982.

(33] Binger, N., and Haris, S.J., “Applications of laser radar technology,” Sensors, Vol. 4, No.
4, pp. 42-44, 1987.

[34] Boissonnat, J.D., and Faugeras, O.D., “Triangulation of 3-D objects,” Proceedings of the
7th International Joint Conference on Artificial Intelligence, Vancouver B.C. Canada, pp.
658-660, August 24-28, 1981.

(35] Boissonnat, J.D., “Representation of objects by triangulating points in 3-D space,” Proceed-
ings of the 7th International Conference on Pattern Recognition, Munich, W. Germany, pp.
830832, October 18-22, 1982,

[36] Bolle, Ruud M. and Cooper, David B., “Bayesian recognition of local 3-D shape by approx-
imating image intensity functions with quadric polynomials,” /EEE Trans. Pattern Analysis
and Machine Intelligence, Vol. PAMI-6, No. 4, pp. 418-429, July 1984

(37] Bolles, Robert C., and Fischler, Martin A., “A RANSAC-based approach to model fitting
and its application to finding cylinders in range data,” Proc. of the 7th IJCAI, pp. 637643,
1984.

[38] Bolles, Robert C., and Cain, Ronald A., “Recognizing and locating partially visible objects:
The local feature-focus method,” Int. J. Robotics Research, Vol. 1, No. 3, pp. 57-82, 1982.

{39] Bolles, Robent C., Horaud, Patrice, and Hannah, Marsha Jo, ‘“3DPO: A three-dimensional
part orientations system,” in Robotics Research: The 1st International Symposium, M. Brady
and R. Paul, Eds. MIT Press, Cambridge, Mass., pp. 413-424, 1984,

(40] Bolles, R.C., Baker, H.H. and Marimont, D.H., “Epipolar plane image analysis: An ap-
proach to determining structure,” International Journal of Computer Vision, Vol. 1, pp.
7-55, 1987.

[41] Boyter, Brian A,, and Aggarwal, J. K., “Recognition of polyhedra from range data,” IEEE
Expert, pp. 47-59, Spring 1986.

[42] Brady, M., and Yuille, A., “An extremum principle for shape from contour,” Proceedings of
the 8th International Joint Conference of Artificial Intelligence, Karlsruhe, West Germany,
HJCAL pp. 969-972, August 1983.



222

(43] Brady, M., and Yuille, A., “An extremum principle for shape from contour,” /EEE Trans-
actions on Pattern Analysis and Machine Intelligence , Vol. PAMI-6, No. 3, pp. 288-301,
1984.

(44] Brady, Michael, “Representing shape,” /EEE International Conference on Robots , pp. 256
265, 1984,

(45] Brice, C., and Fennema, C., “Scene analysis using regions,” Artificial Intelligence, Vol. 1
No. 3, pp. 241-274, 1970.

[46] Brooks, Rodney A., Greiner, R., and Binford, T. O., “The ACRONYM model-based vision
system,” Proc. of the 76k [JCAI, pp. 105-113, 1979.

[47] Brooks, Rodney A., “Model-based three dimensional interpretations of two dimensional
images,” Proceedings of the 7th International Joint Conference on Artificial Intelligence,
Vancouver, B. C.,, Canada, pp. 619624, August 1981.

[48] Brooks, Rodney A., “Symbolic Reasoning among 3-D Models and 2-D Images,” Artificial
Intelligence, Vol. 17, pp. 285-348, August 1981,

[49] Brooks, Rodney A., “Model-based three-dimensional interpretations of two-dimensional
images,” Proc. of the 7th IJCAl, pp. 619-624, 1981.

(50] Brooks, Rodney A., “Representing possible realities for vision and manipulation,” Proceed-
ings of the Pattern Recognition and Image Processing Conference, Las Vegas, Nevada, IEEE
New York, pp. 587-592, June 14-17, 1982.

[51] Brooks, Rodney A., “Model-based three-dimensional interpretations of two-dimensional
images,” IEEE Trans. Pattern Anal. and Machine Intell., Vol. PAMI-5 No. 2, pp. 140~-149,
March 1983.

[52] Brou, Philippe, “Using the Gaussian image to find the orientation of objects,” The Interna-
tional Journal of Robotics Research, Vol. 3, No. 4, pp. 89-125, Winter 1984.

(53] Canny, John Francis, “Finding edges and lines in images,” Massachusetts Institute of Tech-
nology, MIT-AI-TR-720, 1983.

[54] Canny, John Francis, “A computational approach to edge detection,” /EEE Transactions of
Pattern Analysis and Machine Intelligence, Vol. PAMI-8, No. 6, 1986.

[55] Canny, John Francis, “A computational approach to edge detection,” /EEE Transactions of
Pattern Analysis and Machine Intelligence, Yol. PAMI-8, No. 6, 1986.

[56] Chakravarty, Indranil, and Freeman, Herbert, “Characteristic views as a basis for three-
dimensional object recognition,” Proc. of SPIE Robot Vision Conference, Vol. 336, pp.
37-45, May 1982,

[57] Chen, Nai-Yung, Birk, John R., and Kelley, Robert B., “Estimating workpiece pose using the
feature point method,” /EEE Transactions on Automatic Control, AC-25, No. 6, December,
1980.

[58] Cheng, J. K., and Huang, T. S., “Recognition of curvilinear objects by matching relational
structures,” Proc. of PRIP, pp. 343-348, 1982.



223

(59] Cheng, J. K., and Huang, T. S., “Image registration by matching relational structures,”
Proc. of the 6th International Conf. on Pattern Recognition, pp. 354-356, 1982.

[60] Chin, Roland T., and Deyer, Charles R., “Model-based recognition in robot vision,” Com-
puting Surveys, Vol. 18, No. 1, pp. 67-108, 1986.

[61] Clark, James L., “Singularity theory and phantom edges in scale space,” [EEE Transactions
of Pattern Analysis and Machine Intelligence, Vol. 10, No. 5, pp. 720-727, 1988.

[62] Coleman, E. North and Jain, Ramesh, “Obtaining shape of textured and specular surface
using four-source photometry,” Computer Graphics and Image Processing, Vol. 18, No. 4,
pp. 309-328, 1982.

(63] Coleman Jr., E. North, and Sampson, Robert E., “Acquisition of randomly oriented work-
pieces through structure mating,” IEEE Proceedings on Computer Vision and Pattern Recog-
nition, San Francisco, California, pp.350-357, June 19-23, 1985.

[64] Dhome, M., and Kasvand, T., “Polyhedra recognition by hypothesis accumulation from
range data,” National Research Council Canada, Division of Electrical Engineering, ERB-
985, NRCC No. 25655, May 1986.

[65] Douglas, Robert J., “Interpreting threc-dimensional scenes: A model building approach,”
Computer Graphics and Image Processing, Vol. 17, pp. 91-113, 1981.

[66] Duda, Richard O., Nitzan, David, and Barrett, Phyllis, “Use of range and reflectance data
to find planar surface regions,” /EEE Transactions on Pattern Analysis and Machine Intel-
ligence, Vol. PAMI-1, No. 3, pp. 259-271, July 1979.

(67] Enab, Y.M., and Luh, J.Y.S, “Shape from a single view using matching method,” Pattern
Recognition, Vol. 21, No. 4, pp. 313-318, 1988.

[68]) Engelbrecht, Jan R., and Wahl, Friedrich M., “Polyhedral object recognition using Hough-
space features,” Pattern Recognition, Vol. 21, No. 2, pp. 155-167, 1988.

[69] Environmental Research Institute of Michigan, EPICAL Reference Manual — Version 1.2
(ERIM Portable Image Computer Analysis Library), ERIM, Ann Arbor, Michigan, 1987.

[70] Environmental Research Institute of Michigan, Configuration description for ERIM/USPS
range sensor — dynamic and static modes, ERIM, Ann Arbor, Michigan, 1989.

[71] Ettinger, Gil J., “Hierarchical object recognition using libraries of parameterized model
sub-parts,” MIT Artificial Intelligence Laboratory, Technical Report 963, June 1987.

[72] Ettinger, Gil J., “Large Hierarchical object recognition using libraries of parameterized
model sub-parts,” Proceedings of the Computer Society Conference on Computer Vision and
Pattern Recognition, pp. 3241, June 5-9, 1988.

[73] Fan, T.G., Medioni, G., and Nevatia, R., “Description of surfaces from range data using
curvature properties,” Proc. Computer Vision and Pattern Recognition Conf., Miami, Fla.,
June 22-26), IEEE-CS, pp. 86-91. 1986.

[74] Fan, Ting-Jun, Medioni, Gerard, and Nevatia, Ramakant, “Recognizing 3-D objects using
surface descriptions,” IEEE Transactions of Pattern Analysis and Machine Intelligence, Vol.
PAMI-11, No. 11, pp. 1140-1157, November 1989.



224

[75] Faugeras, G. D., Hebert, M., and Pauchor, E., “Segmentation of range data into planar and
quadratic patches,” /EEE, CH1891-1/83/0000/0008, 1983.

[76] Fekete, G., and Davis, L. S., “Property spheres: A new representation for 3-D object
recognition” Proc. IEEE Workshop on Computer Vision: Representation and Control, pp.
192-201, May 1984.

(77] Freeman, H., and Chakravarty, 1., “The use of characteristic views in the recognition of
three-dimensional objects,” Pattern Recognition in Practice E. Gelsema and L. Kanal, Eds.,
North-Holland Publishing Co., Amsterdam, 1980.

(78] GEOMOD User Manual and Reference Manual, Structural Dynamics Research Co. (SDRC),
Cincinnati, Ohio, 1982.

[79] Gleason, G. J., and Agin, G. J., “A modular system for sensor-controlled manipulation and
inspection,” Proc of the 9th Symp. on Industrial Robots, SME, pp. 57-70, 1979,

[80] Goad, C., “Special-purpose automatic programming for 3D model-based vision,” Proc. of
the Image Understanding Workshop, pp. 94-104, 1983.

{81] Golub, Gene H., and Van Loan, Charles F., Matrix Computations, Johns Hopkins University
Press, Baltimore, Maryland, 1983.

(82] Grimson, W.E.L., “A computer implementation of a theory of human stereo vision,” MIT
Al Lab Memo No. 565, January 1980.

(83] Grosky, W. I, and Lu, Yi, “Iconic indexing using generalized pattem matching,” Proceed-
ings of the 7th International Conference on Pattern Recognition, Montreal, Canada, pp.
1168-1170, July 30-Aug 2, 1984,

{84] Grosky, William I, and Lu, Yi, “Iconic indexing using generalized pattemn matching tech-
niques,” Computer Vision, Graphics, and Image Processing, 35, pp. 383403, 1986.

(85] Grosky, William I., and Jain, Ramesh, “A pyramid-based approach to segmentation ap-
plied to region matching,” /EEE Transactions on Pattern Analysis and Machine Intelligence,
PAMI-8, No. 5, pp. 639-650, September 1986.

(86] Haralick, R.M., “The digital cdgc,"‘ Proceedings of the 1981 Conference on Pattern Recog-
nition Image Processing, New York: IEEE Computer Society, pp. 60-73, 1981.

(87] Haralick, R.M., Watson, L.T. and Laffey, T.J., “The topographic primal sketch,” Int. J.
Robotics Res. 2, 1 (Spring), pp. 50-72, 1983.

(88] Haralick, R. M., and Shapiro, L. G., “Image segmentation techniques,” Computer Vision,
Graphics and Image Processing, 29, pp. 100-132, 1985.

(89] Haynes, S. M., and Jain, Ramesh, “Event detection and correspondence,” Optical Engineer-
ing, Vol. 25, No. 3, pp. 387-393, 1986

(90] Hebert, Martial and Ponce, Jean, “A new method for segmenting 3-D scenes into primi-
tives,” Proc. [JCPR, pp. 836-838, 1982.

[91] Hebert, M. and Kanada, T., “The 3D-profile method for object recognition,” Proc. IEEE
Conf. on Computer Vision and Pattern Recognition, pp. 458463, June 1985.



225

(92] Hebert, M., “Outdoor scene analysis using range data,” Proc. IEEE Conf. Robotics and
Automation, pp. 14261432, April 1986.

[93] Henderson, T.C. and Bhanu, B., “Three-point seed method for the extraction of planar
faces from range data,” Proc. IEEE Workshop on Industrial Applications of Machine Vision,
Research Triangle Park, North Carolina, pp. 181-186, May 1982.

(94] Henderson, T. C., “Efficient 3-D object representations for industrial vision systems,” [EEE
Transactions on Pattern Recognition Analysis and Machine Intelligence, Vol. PAMI-5 No.
6, pp. 609-617, November 1983.

[95] Holland, S. W., Rossol, L., and Ward, M. R,, “CONSIGHT-1: A vision-controlled robot
system for transferring parts from belt conveyors,” Computer Vision and Sensor-Based
Robots, G. G. Dodd and L. Rossol, Eds. pp. 81-97, Plenum, New York, 1979.

[96] Hopcroft, John E., and Ullman, Jeffery D., Introduction to automata theory, languages, and
computation, Addison-Wesley Publishing Company, Reading MA, 1979.

[97] Horaud, Patrice, and Bolles, Robert C,, “3DPQ’s strategy for matching three-dimensional
objects in range data,” International Conference on Robotics, Atlanta, Georgia, pp. 7885,
March 13-15, 1984,

[98] Horaud R., and Brady, M., “On the geometric interpretation of image contours,” Proceedings
of the Ist International Conference on Computer Vision, London UK., pp. 374-382, 1987.

[99] Hom, Berthold K.P. and Ikeuchi, Katsushi, “The mechanical manipulation of randomly
oriented parts,” Scientific American, pp. 100111, July 1984.

[100] Hom, B. K. P., “Extended Gaussian images,” Proceedings [EEE, Vol. 72, No. 12, pp.
1671-1686, 1984.

[101] Tkeuchi, Katsushi and Hom, Berthold K.P., “Numerical shape from shading and occluding
boundaries,” Artificial Intelligence, Vol. 17, pp. 141-184, August 1981.

[102] Ikeuchi, K., “Recognition of 3-D objects using the extended Gaussian image,” Proceedings
of the 7th International Joint Conference on Artificial Intelligence, Vancouver, B. C., Canada,
pp. 595-600, August 1981.

[103] Ikeuchi, Katsushi, Hom, Berthold K.P., and Nagata, Shigemi, “Picking up an object from
a pile of objects,” MI.T. Artificial Intelligence Laboratory, A.L. Memo No. 726, May 1983.

[104] Itner, D. and Jain, A., *3D surface discrimination from local curvature measures,” Proc.
IEEE Conf. on Computer Vision and Pattern Recognition, pp. 119-123, June 1985.

[105] Jacobus, C., Mitchell, B., Gilles, A., and Smith, S., “Advanced Research in Recognition of
Handwritten Address ZIP Codes, Phase I Report” ERIM, —ERIM—197200-8-T, ARVD-
87-093 May, 1987.

[106] Jain, Anil K., and Hoffman, Richard, “Evidence-Based Recognition of 3-D Objects,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-10, No. 6, pp. 783-802,
November, 1988.



226

[107] Jarvis, R.A., “A perspective on range finding techniques for computer vision,” JEEE Trans.
Pattern Anal. and Machine Intell., Vol. PAMI-5 No. 2, pp. 122-139 March 1983,

(108] Jarvis, R.A., “A Laser time-of-flight range scanner for robotic vision,” /EEE Trans. Pattern
Anal. and Machine Intell., Vol. PAMI-5 No. 5, pp. 505-512, September 1983

(109] Jenkin, M., “Tracking three dimensional moving light displays,” Proc. Workshop on Mo-
tion: Representation and Control, pp. 66-70. 1983,

[110] Jerian, C. P., and Jain, R., “Determining motion parameters for scenes with translation
and rotation,” Proc. Workshop on Motion: Representation and Control, 1983.

(111] Kanade, T., “Recovery of the three-dimensional shape of an object from a single view,”
Artificial Intelligence, Vol. 17, pp. 409460, August 1981.

(112] Kaplan, Wilfred, Advanced Mathematics for Engineers Addison-Wesley Publishing Com-
pany, Reading, Massachusetts, 1981.

(113] Kelley, R. B., Birks, J. R., Martins, H. A. S, and Tella, R., “A robot system which
acquires cylindrical workpieces from bins,” JEEE Trans. Syst. Man Cybern., Vol. 12, No.
2, pp. 204-213, 1982.

[114] “Shape from texture: An aggregation transform that maps a class of textures into surface
orientation,” Proceedings of the International Joint Conference on Artificial Intelligence, pp.
475-480, 1981.

(115] Kindle, Joseph H., Analyrical Geometry McGraw-Hill, New York, 1950.

[116] Khan, Naseem A., and Jain, Ramesh, “Matching an imprecise object description with
models in a knowledge base,” Proceedings of the 7th International Conference on Pattern
Recognition, Montreal, Canada, pp. 1131-1134, July 30-Aug 2, 1984.

(117] Knoll, Thomas F. and Jain, Ramesh “Recognizing Partially Visible Objects Using Feature
Indexed Hypotheses,” /EEE J. Robotics and Automation, Vol. RA-2, No. 1, pp. 3-13, 1986

(118] Knoll, Thomas F., and Jain, Ramesh C., “Leaming to recognize objects using feature
indexed hypotheses,” Proc. of the 1st International Conf. on Computer Vision (ICCV’87),
1987.

[119] Koenderink, J. J. and van Doom, A.J., “Internal representation of solid shape with respect
to vision,” Biological Cybernetics, Vol. 32, pp. 211-216, 1979.

[120} Kohavi, Zvi, Switching and finite automata theory, McGraw-Hill Book Company, New
York, 1978.

(121] Kom, Matthew R., and Dyer, Charles R., “3-D multiview object representations for model-
based object recognition,” Pastern Recognition, Vol. 20, No. 1, pp. 91-103, 1987.

(122] Kuan, Darwin T. and Drazovich, Robert J., “Model-based interpretation of range imagery,”
AAAI-84, pp. 210-215, 1984,

[123] Liou, Shih-Ping, Chiu, Amold, H., and Jain, Ramesh C., A parallel technique for signal-
level perceptual organization, Submitted for publication - PAMI.



227

[124] Laffey, T. J., Haralick, R. M., and Watson, L. T., “Topographic classification of digital
image intensity surfaces,” Proceedings of the IEEE Workshop.on Computer Vision: Theory
Contr. New York: IEEE Computer Society, pp. 171-177, 1982.

[125] Lipschutz, M. M., Differential Geometry, McGraw-Hill, New York, 1969.

[126] Little, J. J., “An iterative method for reconstruction convex polyhedra from extended Gaus-
sian images,” Proceedings on the National Conference on Artificial Intelligence, Washington,
D. C., AAAI pp. 247-250, August 1983.

[127] Marr, D., and Poggio, D., “Cooperative computation of stereo disparity,” Science, Vol.
194, pp. 283-287, 1976.

[128] McClelland, J. L., Rumelhart, D. E., and Hinton, G. E., “The appeal of Parallel Distributed
Processing,” In Parallel Distributed Processing, Volume 1: Foundations, Rumelhart, D. E.,
McClelland, J. L., and the PDP Research Group, (Eds.), The MIT Press, Cambridge, Mass.,
pp. 3-44, 1986.

[129] Medioni, G. and Nevatia, R., “Description of 3-D surfaces using curvature properties,”
Proc. Image Understanding Workshop, pp. 291-299, October 1984.

{130] Milgram, D.L. and Bjorklund, C.M., “Range image processing: Planar surface extraction,”
Proc. IICPR-5, pp. 912-919, 1980.

[131] Millman, Richard S. and Parker, George D., Elements of Differential Geometry, Prentice-
Hall Inc., Englewood Cliffs, New Jersey, 1977.

[132] O’Rourke, Joseph and Badler, Norman, “Decomposition of three-dimensional objects into
spheres,” IEEE Trans. Pattern Anal. and Machine Intell., Vol. PAMI-1 No. 3, pp. 295-305,
July 1979.

[133] O’Rourke, J., “Polyhedra of minimal as 3D models,” Proceedings of the 7th International
Joint Conference on Artificial Intelligence, Vancouver, B. C., Canada, IJCAI pp. 664-666,
August 1981.

[134] Parvin, B., and Medioni, G., “Segmentation of range images into planar surface by split
and merge,” Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 415417,
June 1986.

[135] Pentland, Alex, “On the extraction of shape information from shading,” M.I.T. Media Lab
Vision Sciences Group, The Media Lab, M.I.T. Cambridge, MA 02138, , Tech. Report 102,
pp. 1-11, March 15, 1988.

[136] Perkins, W. A., “A model-based vision system for industrial parts,” /EEE Trans. on Com-
puters, Vol. 27, No. 2, pp. 126143, February, 1978. :

[137} Potmesil, Michael, “Gencratihg three-dimensional surface models of solid objects from
multiple projections,” PhD. Dissertation, Rensselaer Polytechnic Institute, December 1982.

(138] Potmesil, Michael, “Generating models of solid objects by matching 3-D surface seg-
ments,” Proceedings of the 8th International Joint Conference of Artificial Intelligence,
Karlsruhe, West Germany, UCAI, pp. 1089-1093, August 1983.



228

[139] Prager, J. M., and Arbib, M. A., “Computing the optic flow: The MATCH algorithm and
prediction,” Computer Vision, Graphics, Image Processing, Vol. 24, pp. 271-304, 1983.

[140] Press, William, H., Flannery, Brian, P., Teukolsky, Saul A., and Vetterling, William T.,
Numerical Recipes, Cambridge University Press, Cambridge, 1986.

[141] Riggs, A.J., Tomko, L.M., Wesolowicz, K.G., and Jacobus, C.J., “Design of a laser radar
range imaging sensor for postal applications,” Environmental Research Institute of Michigan,
Ann Arbor, MI, Tech. Report No. 197301-1-81, October 1986.

[142] Rioux, M., “Laser range finder based upon synchronized scanners,” Applied Optics, Vol.
23, No. 21, pp. 3837-3844, 1984.

{143] Rumelhart, D. E., Hinton, G. E., and McClelland, J. L., “A general framework for Par-
allel Distributed Processing,” In Parallel Distributed Processing, Volume 1: Foundations,
Rumelhart, D. E., McClelland, J. L., and the PDP Research Group, (Eds.), The MIT Press,
Cambridge, Mass., pp. 45-76, 1986.

[144] Rumelhart, D. E., and Zipser, D., “‘Feature discovery by competitive leaming,” In Paralle!
Distributed Processing, Volume 1: Foundations, Rumelhart, D. E., McClelland, J. L., and
the PDP Research Group, (Eds.), The MIT Press, Cambridge, Mass., pp. 152-193, 1986.

[145] Rumelhart, D. E., Hinton, G. E., and Williams, R, J,, “A distributed model of human
learning and memory,” In Paralle! Distributed Processing, Volume 2: Psychological and
Biological Models, McClelland, J. L., Rumelhart, D. E., and the PDP Research Group,
(Eds.), The MIT Press, Cambridge, Mass., pp. 170-215, 1986.

[146] Sampson, R.E., “3D range sensor via phase shift detection,” IEEE Computer, Vol. 20, No.
8, pp. 23-24, 1987.

[147] Sato, K., Yamamoto, H. and Inokuchi, S., ““Tuned range finder for high precision 3D data,”
Proc. 8th Intl. Conf. Pattern Recognition, pp. 1168-1171, October 1986.

[148] Sato, Y., Kitagawa, H., Fujita, H., “Shape measurement of curved objects using multiple
slit ray projections,” IEEE Trans. Pattern Anal. and Machine Intell., Vol. PAMI-4, pp. 641-
646, November 1982,

[149] Sethi, LK. and Jayaramamurthy, S.N., “Surface classification using characteristic con-
tours,” Proc. [JCPR, pp. 438-440, August 1984.

{150] Sethi, Ishwar, K., and Jain, Ramesh, “Finding trajectories of feature points in a monocular
image sequence,” IEEE Trans. on PAMI, Vol. PAMI-9, No. 1, pp. 56-73, 1987.

[151] Shah, M. A., and Jain, R., “Detecting time varying comers,” Computer Vision, Graphics,
Image Processing, Vol. 28, pp. 345-355, 1984,

[152] Shneier, M., “A compact relational structure representation,” Proc. of the 6th [JCAI, pp.
818-826, 1979.

[153] Shneier, M., “Models and strategies for matching in industrial vision,” Tech. Rep. TR-1073,
Comp. Sc. Dept., Univ of Maryland, College Park, July, 1981.



229

[154] Sripradisvarakul, Thawach, and Jain, Ramesh, “Generating aspect graphs for curved ob-
jects,” Proceedings of the Workshop on Interpretation of 3D Scenes, Austin Texas, pp. 109-
115, November 27-29 1989.

[155] Strang, Gilbert, Linear algebra and its applications, Academic Press Inc., New York, 1976.

[156] Svetkoff, D.J., “Towards a high resolution, video rate, 3D sensor for machine vision,”
Proceedings of SPIE Conference on Optics, Illumination, and Image Sensing for Machine
Vision, Cambridge MA — D J. Svetkoff (ed.), Vol. 728, Oct. 30-31, 1986.

[157] Terzopoulos, Demetri, “Multilevel computational processes for visual surface reconstruc-
tion,” Computer Vision, Graphics, and Image Processing, Vol. 24, pp. 52-96, 1983.

[158] Terzopoulos, Demetri, “The role of constraints and discontinuities in visible-surface recon- -
struction,” Proceedings of the 8th International Joint Conference on Artificial Intelligence,
Karlsruhe, Germany, 1JCAI, August, 1983.

[159] Terzopoulos, Demetri, “Multiresolution computation of visible-surface representations,”
PhD. Thesis, Massachusetts Institute of Technology, January, 1984.

[160] Terzopoulos, Demetri, “Computing visible-surface representations,” M.IT. Artificial Intel-
ligence Laboratory, A.l. Memo No. 800, March, 1985.

{161] Tropf, H., Geisselmann, H., and Foith, J. P., “Some applications of the fast industrial
vision system S.AM.,” Conf. Record of the Workshop on Industrial Applications of Mach.
Vision, pp. 73-79, 1982.

[162] Tsai, R. Y., and Huang, T. S., “Estimating three-dimensional motion parameters of a rigid
planar patch,” Proc. PRIP, pp. 94-97, 1981.

[163] Tsai, R. Y., and Huang, T. S., “Uniqueness and estimation of three-dimensional motion
parameters of rigid objects with curved surfaces,” Proc PRIP, pp.1 12-118, 1982.

[164] Tsai, R. Y., Huang, T. S., and Zhuy, W. L., “Estimating three-dimensional motion pa-
rameters of a rigid planar patch, II: Singular value decomposition,” IEEE Trans. Acoust.,
Speech, Signal Processing, Vol. ASSP-30, pp. 525-534, 1984.

[165] Waxman, A. M., “An image flow paradigm,” Proc. Workshop on Computer Vision, 1684,

[166] Wilson, W. A., and Tracey, J. L., Analytic Geometry — Alternate Edition D. C. Heath and
Company, Boston, Massachusetts, 1937.

[167] Witkin, A.P., “Recovering surface shape and orientation from texture,” Artificial Intelli-
gence, Vol. 17, pp. 1747, 1981.

[168] Wong, A. and Lu, S., *Recognition and knowledge synthesis of 3D object images,” Proc.
IEEE Conf. on Computer Vision and Pattern Recognition, pp. 162-166, June 1985.

[169] Yachida, M., Asada, M., and Tsuji, S., “Automatic analysis of moving images,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, pp. 12-19, 1981.

[170] Zuech, N., and Ray, R., “Vision guided robotic arm control for part acquisition,” Proc. of
the Control Engineering Conf., 1983.



230

(171] Zuk, D.M., and Dell’eva M.L., “Three-dimensional vision system for the adaptive suspen-
sion vehicle,” Environmental Research Institute of Michigan, Ann Arbor, MI, Final Report
No. 170400-3-F, 1983.

(172] Zuk, D.M,, and Dell’eva M.L., “Intelligent task automation,” Environmental Research
Institute of Michigan, Ann Arbor, MI, Tech. Report No. 165700-18-F, December 1984.



